Векторное сложение скоростей. Закон сложения скоростей в сто

Преобразования Лоренца дают нам возможность вычислять изменение координат события при переходе от одной системы отсчета к другой. Поставим теперь вопрос о том, как при изменении системы отсчета будет меняться скорость одного и того же тела?

В классической механике, как известно, скорость тела просто складывается со скоростью системы отсчета. Сейчас мы убедимся, что в теории относительности скорость преобразуется по более сложному закону.

Мы снова ограничимся рассмотрением одномерного случая. Пусть две системы отсчета S и S` «наблюдают» за движением некоторого тела, которое перемещается равномерно и прямолинейно параллельно осям х и х` обеих систем отсчета. Пусть скорость тела, измеренная системой отсчета S , есть и ; скорость того же тела, измеренную системой S`, обозначим через и` . Буквой v будем по-прежнему обозначать скорость системы S ` относительно S .

Допустим, что с нашим телом происходят два события, координаты которых в системе S суть x 1 ,t 1 , и х 2 , t 2 . Координаты тех же событий в системе S ` пусть будут х` 1 , t ` 1 ; x` 2 , t` 2 . Но скорость тела есть отнощение пройденного телом пути к соответствующему промежутку времени; поэтому, чтобы найти скорость тела в той и другой системах отсчета, нужно разность пространственных координат обоих событий разделить на разность временных координат

которую можно, как всегда, получить из релятивистской, если скорость света считать бесконечной. Ту же формулу можно записать в виде

Для небольших, «обычных» скоростей обе формулы— релятивистская и классическая — дают практически совпадающие результаты, в чем читатель при желании легко сможет убедиться. Но при скоростях, близких к скорости света, разница становится весьма ощутимой. Так, если v=150 000 км/сек , u`=200 000 км/ с ек, км/сек релятивистская формула дает u = 262 500 км/ с ек.

S со скоростью v = 150 000 км/сек. S ` дает результат u =200 000 км/сек. км/ с ек.


км/сек, а второго — 200 000 км/сек, км .

с. Не представляет никакого труда доказать это утверждение вполне строго. Действительно, легко проверить.

Для небольших, «обычных» скоростей обе формулы— релятивистская и классическая — дают практически совпадающие результаты, в чем читатель при желании легко сможет убедиться. Но при скоростях, близких к скорости света, разница становится весьма ощутимой. Так, если v=150 000 км/сек , u`=200 000 км/ с ек, то вместо классического результата u = 350 000 км/сек релятивистская формула дает u = 262 500 км/ с ек. Согласно смыслу формулы сложения скоростей, этот результат означает следующее.

Пусть система отсчета S` движется относительно системы отсчета S со скоростью v = 150 000 км/сек. Пусть в том же направлении движется тело, причем измерение его скорости системой отсчета S ` дает результат u` =200 000 км/сек. Если теперь измерить скорость того же тела с помощью системы отсчета S то получится u=262 500 км/ с ек.


Следует подчеркнуть, что полученная нами формула предназначена именно для пересчета величины скорости одного и того же тела от одной системы отсчета к другой, а отнюдь не для вычисления «скорости сближения» или «удаления» двух тел. Если мы из одной и той же системы отсчета наблюдаем два движущихся навстречу друг другу тела, причем скорость одного тела равна 150 000 км/сек, а второго — 200 000 км/сек, то расстояние между этими телами каждую секунду будет уменьшаться на 350 000 км . Теория относительности не упраздняет законов арифметики.

Читатель уже понял, конечно, что, применяя эту формулу к скоростям, не превосходящим скорость света, мы снова получим скорость, не превосходящую с. Не представляет никакого труда доказать это утверждение вполне строго. Действительно, легко проверить, что имеет место равенство

Так как и` ≤ с и v < c , то в правой части равенства числитель и знаменатель, а с ними и вся дробь, неотрицательны. Поэтому квадратная скобка меньше единицы, а потому и ≤ с .
Если и ` = с , то и и= с. Это есть не что иное, как закон постоянства скорости света. Не следует, конечно, рассматривать этот вывод как «доказательство» или хотя бы «подтверждение» постулата постоянства скорости света. Ведь мы с самого начала исходили из этого постулата и неудивительно, что пришли к результату, который ему не противоречит, в противном случае этот постулат был бы опровергнут путем доказательства от противного. Вместе с тем мы видим, что закон сложения скоростей эквивалентен постулату постоянства скорости света, каждое из этих двух утверждений логически вытекает из другого (и остальных постулатов теории относительности).

При выводе закона сложения скоростей мы предполагали, что скорость тела параллельна относительной скорости систем отсчета. Этого предположения можно было ие делать, но тогда наша формула относилась бы лишь к той компоненте скорости, которая направлена по оси x, и формулу следовало бы записать в виде

С помощью этих формул мы разберем явление аберрации (см. § 3). Ограничимся лишь простейшим случаем. Пусть некоторое светило в системе отсчета S неподвижно, пусть, далее, система отсчета S ` движется относительно системы S со скоростью v и пусть наблюдатель, движущийся вместе с S`, принимает лучи света от светила как раз в тот момент, когда оно находится у него точно над головой (рис. 21). Составляющие скорости этого луча в системе S будут
u x = 0, u y = 0, u x = -c.

Для системы отсчета S` наши формулы дают
u` x = -v, u` y = 0,
u` z = -c (1 - v 2 /c 2 )
Мы получим тангенс угла наклона луча к оси z`, если разделим и` х на и` z :
tg α = и` х / и` z = (v/c) / √(1 - v 2 /c 2)

Если скорость v не очень велика, то можно применить известную нам приближенную формулу, с помощью которой получаем
tg α = v/c + 1/2*v 2 /c 2 .
Первое слагаемое представляет собой хорошо известный классический результат; второе слагаемое есть релятивистская поправка.

Орбитальная скорость Земли равна примерно 30 км/сек, так что (v / c ) = 1 0 -4 . Для малых углов тангенс равен самому углу, измеренному в радианах; так как радиан содержит круглым счетом 200 000 угловых секунд, то получаем для угла аберрации:
α = 20°
Релятивистская поправка в 20 000 000 раз меньше и лежит далеко за пределами точности астрономических измерений. Вследствие аберрации звезды описывают ежегодно на небе эллипсы с большой полуосью в 20".

Когда мы смотрим на движущееся тело, мы видим его не там, где оно находится в данный момент, а там, где оно было несколько раньше, ибо свету нужно некоторое время, чтобы Дойти от тела до наших глаз. Это явление с точки зрения теории относительности эквивалентно аберрации и сводится к ней при переходе к той системе отсчета, в которой рассматриваемое тело неподвижно. На основании этого простого соображения мы можем получить формулу аберрации совершенно элементарным путем, не прибегая к релятивистскому закону сложения скоростей.

Пусть наше светило движется параллельно земной поверхности справа налево (рис. 22). Когда оно прибывает в точку А, наблюдатель, находящийся точно под ним в точке С, видит его еще в точке В. Если скорость светила равна v , а промежуток времени, в течение которого оно проходит отрезок А В , равен Δt , то

AB = Δt ,
BC = c Δt ,

sin α = AB/BC = v/c.

Но тогда, согласно формуле тригонометрии,

что и требовалось доказать. Заметим, что в классической кинематике эти две точки зрения не эквивалентны.

Интересен также следующий вопрос. Как известно, в классической кинематике скорости складываются по правилу параллелограмма. Мы заменили этот закон другим, более сложным. Значит ли это, что в теории относительности скорость уже не есть вектор?

Во-первых, то обстоятельство, что u ≠ u `+ v (жирными буквами мы обозначаем векторы), само по себе не дает еще оснований отрицать векторную природу скорости. Из двух данных векторов третий вектор можно получить не только путем их сложения, а, например, путем векторного умножения, и вообще бесчисленным множеством способов. Ниоткуда не следует, что при перемене системы отсчета векторы и` и v обязаны именно складываться. И действительно, существует формула, выражающая и через и` и v с помощью операций векторного исчисления:

В связи с этим следует признать, что название «закон сложения скоростей» не совсем удачно; правильнее говорить, как это и делают некоторые авторы, не о сложении, а о преобразовании скорости при перемене системы отсчета.

Во-вторых, и в теории относительности можно указать случаи, когда скорости складываются по-прежнему векторно. Пусть, например, тело двигалось в течение некоторого промежутка времени Δt со скоростью u 1 , а затем — такой же отрезок времени со скоростью u 2 . Это сложное движение можно заменить движением с постоянной скоростью u = u 1 + u 2 . Здесь скорости u 1 и u 2 складываются, как векторы, по правилу параллелограмма; теория относительности не вносит здесь никаких изменений.
Следует вообще заметить, что большинство «парадоксов» теории относительности связано так или иначе с изменением системы отсчета. Если рассматривать явления в одной и той же системе отсчета, то вносимые теорией относительности изменения в их закономерности далеко не столь кардинальны, как часто думают.

Отметим еще, что естественным обобщением обычных трехмерных векторов в теории относительности являются векторы четырехмерные; при перемене системы отсчета они преобразуются по формулам Лоренца. Кроме трех пространственных компонент, они имеют компоненту временную. В частности, можно рассматривать четырехмерный вектор скорости. Пространственная «часть» этого вектора, однако, не совпадает с обычной трехмерной скоростью, и вообще четырехмерная скорость по своим свойствам заметно отличается от трехмерной. В частности, сумма двух четырехмерных скоростей не будет уже, вообще говоря, скоростью.

. Релятивистская механика

Урок 2/69

Тема. Релятивистский закон сложения скоростей

Цель урока: ознакомить учащихся с релятивістським законом сложения скоростей

Тип урока: изучение нового материала

План урока

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Вопрос к ученикам во время изложения нового материала

1. Что вы понимаете под инерциальными системами отсчета? Приведите примеры.

2. Принцип относительности классической физики.

3. В чем заключаются различия в формулировке принципа относительности Галилея и принцип относительности Эйнштейна?

4. Сравните понятия одновременности в классической физике и в теории относительности.

5. В каком случае понятия «раньше» и «позже» являются относительными, а в каком - абсолютными?

6. Два события в некоторой инерциальной системе отсчета происходят в одной точке одновременно. Будут ли эти события одновременными в другой инерциальной системе отсчета?

7. Можно утверждать, что пространственно разделенные события, одновременные в одной инерциальной системе отсчета, одновременные и во всех других инерциальных системах отсчета?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

Что мы узнали на уроке

Во всех инерциальных системах отсчета при одинаковых начальных условиях все механические явления протекают одинаково.

Классический закон сложения скоростей:

Релятивистский закон сложения скоростей:

Событие - это упрощенная модель такого явления, которое в заданной системе отсчета можно считать таким, что происходит в определенной точке пространства в определенный момент времени.

События, одновременные в одной системе отсчета, оказываются неодновременным в другой системе отсчета, которая движется равномерно и прямолинейно относительно первой, то есть одновременность - понятие относительное.

г1 ) - 22.5; 22.6;

р2) - 22.7; 22.20; 22.21;

г3 ) - 22.33, 22.34; 22.39.


Давайте в нескольких статьях рассмотрим подробно и внимательно закон сложения скоростей и решения задач, с использованием этого закона.

Для начала, вспомним, что часто мы наблюдаем довольно сложные типы движения, когда тело движется относительно системы отсчёта, которая в тоже время движется относительно Земли. И первая трудность здесь заключается в выборе подвижной и неподвижной систем отсчёта. Сегодня мы это и разберём. Если брать за неподвижную систему отсчета дерево, растущее на Земле (а чаще всего именно землю берут за неподвижную систему отсчёта), то довольно легко ввести другие системы отсчёта.

Попытаемся это сделать на следующих примерах:

1. Пассажир движется в движущемся автобусе (или по движущемуся эскалатору).

Здесь неподвижная система отсчета – Дерево , а подвижная система отсчета – автобус (эскалатор). И тогда

  • скорость пассажира относительно автобуса (эскалатора) – скорость пассажира (Т ела) О тносительно П одвижной системы отсчета (автобуса; эскалатора) (ϑ ТоП),
  • скорость пассажира относительно Земли (дерева) – скорость пассажира (Т ела) О З емли) (ϑ ТоЗ),
  • скорость автобуса (эскалатора) – скорость П одвижной системы отсчета (автобуса; эскалатора) О тносительно неподвижной (З емли) (ϑ ПоЗ).

2. Легковая машина и грузовик движутся по шоссе (даже не важно, в каком направлении).

В качестве неподвижной системы отсчета оставляем дерево, растущее на Земле, за подвижную систему отсчета возьмём грузовую машину. Тогда,

  • скорость легковой машины относительно грузовой – скорость легковой машины (Т ела) О тносительно П одвижной системы отсчета (грузовой машины) (ϑ ТоП),
  • скорость легковой машины относительно Земли (Дерева) скорость легковой машины (Т ела) О тносительно неподвижной системы отсчета (З емли) (ϑ ТоЗ). Эту скорость показывает спидометр – прибор, для измерения скорости, который есть в каждой машине.
  • с корость грузовой машины скорость П одвижной системы отсчета (грузовой машины) О тносительно неподвижной (З емли) (ϑ ПоЗ). Эту скорость показывает спидометр грузового автомобиля.

3. Лодка движется по реке.

Опять, в качестве неподвижной системы отсчета дерево , растущее на Земле. За неподвижную систему отсчета возьмём течение реки (чтобы это течение визуализировать, представьте опавший лист на поверхности воды). Тогда,

  • скорость лодки относительно листка скорость лодки (Т ела) О тносительно П одвижной системы отсчета (течения реки) (ϑ ТоП), т.е скорость лодки в стоячей воде ,
  • скорость лодки относительно Земли (дерева) скорость лодки (Т ела) О тносительно неподвижной системы отсчета (З емли) (ϑ ТоЗ),
  • скорость течения (листка) скорость П одвижной системы отсчета (течения реки) О тносительно неподвижной (З емли) (ϑ ПоЗ).

4. Падает капля дождя.

Опять, в качестве неподвижной системы отсчета дерево, растущее на Земле, подвижной системы отсчета ветер (чтобы это визуализировать, представьте летящий оторвавшийся листок). Тогда,

  • скорость капли относительно ветра скорость капли (Т ела) О тносительно П одвижной системы отсчета (ветра) (ϑ ТоП),
  • скорость капли относительно Земли (дерева) скорость капли (Т ела) О тносительно неподвижной системы отсчета (З емли) (ϑ ТоЗ),
  • скорость ветра скорость П одвижной системы отсчета (ветра) О тносительно неподвижной (З емли) (ϑ ПоЗ).

Разобравшись, с выбором систем отсчёта, введём и выучим закон сложения скоростей:

Скорость тела относительно неподвижной системы отсчета (ϑ ТоЗ ) равна векторной сумме скорости тела относительно подвижной системы отсчета (ϑ ТоП ) и скорости подвижной системы отсчета относительно неподвижной (ϑ ПоЗ ).

При решении задач исходное выражение всегда будет в таком векторном виде. А вот как решать, приведённые выше задачи, это мы обсудим в следующих статьях.

Остались вопросы? Не знаете, как решать задачи на закон сложения скоростей?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Кинематика - это просто!


Формулировка закона:

Как в учебнике Буховцева для 10 класса:

Если тело движется относительно системы отсчета К 1 со скоростью V 1 ,
а сама система отсчета К 1 движется относительно другой системы отсчета К 2 со скоростью V ,
то скорость тела (V 2 ) относительно второй системы отсчета К 2
равна геометрической сумме векторов V 1 и V .

Упрощаем форммулировку, не меняя смысла:

Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной системы отсчета.

Вторая формулировка запоминается проще, какой ползоваться решайте сами!

где всегда
К 2 - неподвижная система отсчета
V 2 - скорость тела относительно неподвижной системы отсчета (К 2 )

К 1 - подвижная система отсчета
V 1 - скорость тела относительно подвижной системы отсчета (К 1 )

V - скорость подвижной системы отсчета (К 1 ) относительно неподвижной системы отсчета (К 2 )

Алгоритм решения задачи на закон сложения скоростей

1. Определить тело - обычно это тело, о скорости которого спрашивается в задаче.
2. Выбрать неподвижную систему отсчета (дорога, берег) и подвижную систему отсчета (обычно это второе движущееся тело).

P.S. В условиях задачи скорости тел заданы обычно относительно неподвижной системы отсчета (например, дороги или берега)

3. Ввести обозначения скоростей (V 1 , V 2 , V ).
4. Сделать чертеж, на котором показать координатную ось ОХ и векторы скорости.
Лучше, если ОХ будет совпадать по направлению с вектором скорости выбранного тела .
5. Записать формулу закона сложения скоростей в векторном виде.
6. Выразить из формулы искомую скорость в векторном виде.
7. Выразить искомую скорость в проекциях.
8. Определить по чертежу знаки проекций.
9. Расчет в проекциях.
10. В ответе не забыть перейти от проекции к модулю.

Пример решения простейшей задачи на закон сложения скоростей

Задача

Два автомобиля движутся равномерно по шоссе навстречу друг другу. Модули их скоростей равны 10 м/с и 20 м/с.
Определить скорость первого автомобиля относительно второго.

Решение:

Еще раз! Если вы внимательно прочитали пояснения к формуле, то решение любой задачи, пойдет "на автомате"!

1. В задаче спрашивается о скорости первого автомобиля - значит тело - первый автомобиль.
2. По условию задачи выбираем:
K 1 - подвижная система отсчета сязана со вторым автомобилем
К 2 - неподвижная система отсчета связана с дорогой

3. Вводим обозначения скоростей:
V 1 - скорость тела (первого авто) относительно подвижной системы отсчета (второго авто) - найти!
V 2 - скорость тела (первого авто) относительно неподвижной систеы отсчета (дороги) - дано 10м/с
V - скоростьь подвижной системы отсчета (второго авто) относительно неподвижной системы отсчета (дороги) - дано 20двух уравнений:м/с

Теперь понятно, что в задаче надо определить V 1 .
4. Делаем чертеж, выписываем формулу:

5. далее по алгоритму.....

Всё, все отдыхают! )))

P.S. Если движение происходит не по пряммой, а на плоскости, то при переводе формулы векторного вида в проекции добавляется еще одно уравнение в прекциях относительно оси OY, далее решаем систему двух уравнений:
V 2x = V 1x + V x
V 2y = V 1y + V y

А эта система отсчёта в свою очередь движется относительно другой системы) возникает вопрос о связи скоростей в двух системах отсчёта.

Энциклопедичный YouTube

    1 / 3

    Сложение скоростей (кинематика) ➽ Физика 10 класс ➽ Видеоурок

    Урок 19. Относительность движения. Формула сложения скоростей.

    Физика. Урок № 1. Кинематика. Закон сложения скоростей

    Субтитры

Классическая механика

V → a = v → r + v → e . {\displaystyle {\vec {v}}_{a}={\vec {v}}_{r}+{\vec {v}}_{e}.}

Данное равенство представляет собой содержание утверждения теоремы о сложении скоростей .

Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости (относительно неподвижной системы) той точки подвижной системы отсчёта, в которой в данный момент времени находится тело.

Примеры

  1. Абсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, которую имеет точка пластинки под мухой относительно земли (то есть с которой её переносит пластинка за счёт своего вращения).
  2. Если человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50 - 5 = 45 километров в час, когда он идёт в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55 - 50 = 5 километров в час.
  3. Если волны движутся относительно берега со скоростью 30 километров в час, и корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30 - 30 = 0 километров в час, то есть относительно корабля они становятся неподвижными.

Релятивистская механика

В XIX веке классическая механика столкнулась с проблемой распространения этого правила сложения скоростей на оптические (электромагнитные) процессы. По существу произошёл конфликт между двумя идеями классической механики, перенесёнными в новую область электромагнитных процессов.

Например, если рассмотреть пример с волнами на поверхности воды из предыдущего раздела и попробовать обобщить на электромагнитные волны, то получится противоречие с наблюдениями (см., например, опыт Майкельсона).

Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущиеся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, то есть сможем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе , то преобразования называются галилеевыми . Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками - разница между их координатами в одной инерциальной системе отсчёта - всегда равно их расстоянию в другой инерциальной системе.

Вторая идея - принцип относительности . Находясь на корабле, движущимся равномерно и прямолинейно , нельзя обнаружить его движение какими-то внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое электродинамическими эффектами? Интуиция (довольно явным образом связанная с классическим принципом относительности) говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определённой скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантна относительно галлилеевых преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики - правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми.

Теория относительности даёт ответ на этот вопрос. Она расширяет понятие принципа относительности, распространяя его и на оптические процессы. Правило сложения скоростей при этом не отменяется совсем, а лишь уточняется для больших скоростей с помощью преобразования Лоренца:


v r e l = v 1 + v 2 1 + v 1 v 2 c 2 . {\displaystyle v_{rel}={\frac {{v}_{1}+{v}_{2}}{1+{\dfrac {{v}_{1}{v}_{2}}{c^{2}}}}}.}

Можно заметить, что в случае, когда v / c → 0 {\displaystyle v/c\rightarrow 0} , преобразования Лоренца переходят в преобразования Галилея . Это говорит о том, что специальная теория относительности сводится к механике Ньютона при скоростях, малых по сравнению со скоростью света. Это объясняет, каким образом соотносятся эти две теории - первая является обобщением второй.

gastroguru © 2017