Номиналы резисторов в аналоге динистора. Динисторы, их аналоги и тиристоры – сделай сам

Наряду с приборами, предназначенными для линейного усиления сигналов, в электронике, в вычислительной технике и особенно в автоматике широкое применение находят приборы с падающим участком вольт-амперной характеристики. Эти приборы чаще всего выполняют функции электронного ключа и имеют два состояния: закрытое, характеризующееся высоким сопротивлением; и открытое, характеризующееся минимальным сопротивлением.

Рассмотрим работу диода, состоящего из четырех чередующихся -слоев (Рис. 1.26).

Если в устройстве нет возможности установить требуемый динис- тор, можно пойти по другому пути и собрать схему, приведенную на Рис. 1.28.

Электронные устройства с динисторами (многие из этих устройств являются источниками питания и преобразователями напряжения) имеют такие преимущества; как малая рассеиваемая мощность и высокая стабильность выходного напряжения. Одним из недостатков является ограниченный выбор выходных напряжений, обусловленный напряжением включения (открывания) динисторов. Устранение этого недостатка - задача разработчиков и производителей современной элементной базы динисторов.

Снабдим одну из баз динистора, например щ, внешним выводом и используем этот третий электрод для задания дополнительного тока через переход р\-щ. Для реальных четырехслойных структур характерна различная толщина баз. В качестве управляющей используется база, у которой коэффициент передачи оц близок к единице. В этом случае прибор будет обладать свойствами тиратрона. Для такого прибора, или тиристора, используется та же терминология, что и для обычного транзистора: выходной ток называется коллекторным, а управляющий - базовым. Эмиттером считается слой, примыкающий к базе, хотя с физической точки зрения эмиттером является и второй внешний слой, в данном случае - п 2 .

При увеличении управляющего тока Iq напряжение прямого переключения уменьшается, отчасти возрастает ток прямого переключения и уменьшается ток обратного переключения. В результате отдельные кривые с ростом тока 1(, как бы «вписываются» друг в друга вплоть до полного исчезновения отрицательного участка (такую кривую называют спрямленной характеристикой).

Мощные используются в качестве контакторов, коммутаторов тока, а также в преобразователях постоянного напряжения, инверторах и выпрямительных схемах с регулируемым выходным напряжением.

Время переключения у тиристоров значительно меньше, чем у тиратронов. Даже у мощных приборов (с токами в десятки ампер и больше) время прямого переключения составляет около 1 мкс, а время обратного переключения не превышает 10…20 мкс. Наряду с конечной длительностью фронтов напряжения и тока имеют место задержки фронтов по отношению к моменту подачи управляющего импульса. Наряду с мощными тиристорами разрабатываются и маломощные варианты. В таких приборах время прямого переключения составляет десятки, а время обратного переключения - сотни наносекунд. Столь высокое быстродействие обеспечивается малой толщиной слоев и наличием электрического поля в толстой базе. Маломощные быстродействующие используются в различных спусковых и релаксационных схемах.

Диодные тиристоры - динисторы находят широкое применение в различных устройствах автоматики. Однако такое использование динисторов имеет ряд недостатков, главный из которых заключается в следующем.

Напряжение включения самого низковольтного отечественного динистора КН102А составляет 20 В, а падение напряжения на нем в открытом состоянии - менее 2 В. Таким образом, к управляющему переходу тиристора после включения динистора прикладывается напряжение около 18 В. В то же время максимально допустимое напряжение на этом переходе для распространенных тиристоров серии К У 201, К У 202 равно всего лишь 10 В. А если еще учесть, что напряжение включения динисторов даже одного типа имеет разброс, достигающий 200%, то станет ясно, что управляющий переход тиристора испытывает чрезмерно большие перегрузки. Это и ограничивает применение динисторов для управления триодными тиристорами.

В подобных случаях можно использовать двухполюсники - аналоги динисторов , отличающиеся тем, что их напряжения включения могут быть гораздо меньше напряжения включения самого низковольтного динистора.

Схема одного из аналогов - транзисторного динистора показана на рис. 1. Он состоит из транзисторов разной структуры, включенных так, что ток базы одного из них является током коллектора другого и наоборот. Другими словами, это устройство, охваченное глубокой положительной обратной связью.

Рис. 1

При подключении питания через эмиттерный переход транзистора Т1 течет ток базы, в результате чего транзистор открывается, а это вызывает появление тока базы транзистора Т2.

Открывание этого транзистора приводит к росту тока базы транзистора Т1 , и, следовательно, дальнейшему его открыванию. Процесс протекает лавинообразно, поэтому очень скоро оба транзистора оказываются в насыщенном состоянии.

Напряжение включения такого устройства при использовании, например, транзисторов МП116 и МП113 равно всего лишь нескольким долям вольта, то есть практически не отличается от напряжения насыщения этой пары транзисторов. Это не позволяет использовать такой двухполюсник в качестве переключающего прибора. Если же эмиттерные переходы транзисторов Т1 и Т2 шунтировать резисторами, как показано на рис. 2, то напряжение включения устройства значительно возрастет.

Рис. 2

Причина этого явления - в уменьшении глубины положительной обратной связи, так как в базу каждого транзистора теперь ответвляется только часть коллекторного тока другого. В результате лавинообразный процесс открывания транзисторов протекает при более высоком напряжении. Напряжение включения можно изменять с помощью резисторов R1 и R2 .

Так, при их сопротивлениях, равных 5,1 кОм, напряжение включения составляет 9 В, при 3 кОм- 12 В. Результаты получены при плавном повышении напряжения на двухполюснике. Если же напряжение имеет импульсный характер, то включение может произойти и при меньших его величинах. Дело в том, что транзисторный аналог, как и обычный динистор чувствителен не только к величине приложенного к нему напряжения, но и к скорости его нарастания. Исключить возможность включения при напряжениях, меньших напряжения включения, можно, если шунтировать двухполюсник конденсатором С1 (см. рис. 2).

Рис. 3

Как и у динистора, напряжение включения транзисторного аналога уменьшается при повышении температуры. Этот недостаток легко устраним заменой резисторов R1 и R2 терморезисторами.

Схема другого аналога динистора показана на рис. 3. Напряжение включения такого двухполюсника определяется цепочкой, образованной стабилитроном Д1 и управляющим переходом тиристора Д2 , между которыми распределяется напряжение, приложенное к выводам двухполюсника. Когда это напряжение становится равным напряжению включения, стабилитрон пробивается, и через управляющий переход тиристора течет ток. Тиристор открывается, шунтируя стабилитрон и напряжение на выводах двухполюсника резко уменьшается. Напряжение включения устройства, показанного на рис. 3, равно 8 В.

Рис. 4

На рис. 4 приведена схема на триодном тиристоре Д5, в цепи управления которым применен последний из рассмотренных двухполюсников (стабилитрон Д6 и тиристор Д7). При закрытом тиристоре Д5 конденсатор С1 заряжается через нагрузку и резистор R2 током, выпрямленным диодами Д1-Д4.

Когда напряжение на конденсаторе становится равным напряжению включения двухполюсника, стабилитрон Д6 пробивается и открывает тиристор Д7. Конденсатор С1 разряжается через управляющий переход тиристора Д5 , в результате чего он также открывается и подключает нагрузку к выпрямителю на время, оставшееся до конца полупериода сетевого напряжения. В конце его тиристор закрывается, так как ток через него уменьшается до нуля, после чего цикл повторяется.

С помощью переменного резистора R2 можно изменять ток заряда конденсатора С2, а следовательно, и момент открывания тиристора Д5, то есть регулировать среднюю величину напряжения на нагрузке.

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:

Цоколевка динистора DB3

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.

Характеристики динистора DB3

Аналоги динистора DB3

  • HT-32
  • STB120NF10T4
  • STB80NF10T4
  • BAT54

Как проверить динистор DB3

Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с .

Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.

Источник питания

Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и С1, С2 образуют однополупериодный и фильтр.

Этапы проверки

Шаг 1 : Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжения на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.

Шаг 2 : Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.

Шаг 3 : Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.

Проверка динистора с помощью осциллографа

Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.

В данной схеме заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжения пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.

Тиристоры относятся к полупроводниковым приборам структуры p-n-p-n, и принадлежат, по сути, к особому классу , четырехслойных, трех (и более) переходных приборов с чередующейся проводимостью.

Устройство тиристора позволяет ему работать подобно диоду, то есть пропускать ток лишь в одном направлении.

И также как у полевого транзистора, у имеется управляющий электрод. При этом как диод, тиристор имеет особенность, - без инжекции неосновных рабочих носителей заряда через управляющий электрод он не перейдет в проводящее состояние, то есть не откроется.

Упрощенная модель тиристора позволяет нам понять, что управляющий электрод здесь аналогичен базе биполярного транзистора, однако имеется ограничение, которое заключается в том, что отпереть то тиристор с помощью этой базы можно, а вот запереть нельзя.

Тиристор, как и мощный полевой транзистор, конечно может коммутировать значительные токи. И в отличие от полевых транзисторов, мощности, коммутируемые тиристорами, могут исчисляться мегаваттами при высоких рабочих напряжениях. Но имеют тиристоры один серьезный недостаток — значительное время выключения.

Для того чтобы запереть тиристор, необходимо прервать или сильно уменьшить его прямой ток на достаточно продолжительное время, за которое неравновесные основные рабочие носители заряда, электронно-дырочные пары, успели бы рекомбинировать или рассосаться. Пока не прерван ток, тиристор будет оставаться в проводящем состоянии, то есть будет продолжать вести себя как .

Схемы коммутации переменного синусоидального тока обеспечивают тиристорам подходящий режим работы — синусоидальное напряжение смещает переход в обратном направлении, и тиристор автоматически запирается. Но для поддержания работы прибора, на управляющий электрод необходимо в каждом полупериоде подавать отпирающий управляющий импульс.

В схемах с питанием на постоянном токе прибегают к дополнительным вспомогательным схемам, функция которых — принудительно снизить анодный ток тиристора, и вернуть его в запертое состояние. А поскольку при запирании рекомбинируют носители заряда, то и скорость переключения тиристора сильно ниже, чем у мощного полевого транзистора.

Если сравнить время полного закрытия тиристора с временем полного закрытия полевого транзистора, то разница достигает тысяч раз: полевому транзистору чтобы закрыться нужно несколько наносекунд (10-100 нс), а тиристору требуется несколько микросекунд (10-100 мкс). Почувствуйте разницу.

Конечно, есть области применения тиристоров, где полевые транзисторы не выдерживают конкуренции с ними. Для тиристоров практически нет ограничений в предельно допустимой коммутируемой мощности — это их преимущество.

Тиристоры управляют мегаваттами мощности на больших электростанциях, в промышленных сварочных аппаратах они коммутируют токи в сотни ампер, а также традиционно управляют мегаваттными индукционными печами на сталелитейных заводах. Здесь полевые транзисторы никак не применимы. В импульсных же преобразователях средней мощности полевые транзисторы выигрывают.

Долгое выключение тиристора, как говорилось выше, объясняется тем, что будучи включенным, он требует для выключения снятия коллекторного напряжения, и подобно биполярному транзистору, у тиристора уходит конечное время на рекомбинацию или удаление неосновных носителей.

Проблемы, которые вызывают тиристоры в связи с этой своей особенностью, связаны прежде всего с невозможностью переключения с высокими скоростями, как это могут делать полевые транзисторы. А еще перед подачей на тиристор коллекторного напряжения, тиристор должен обязательно быть закрытым, иначе неизбежны коммутационные потери мощности, полупроводник чрезмерно при этом нагреется.

Иначе говоря, предельное dU/dt ограничивает быстродействие. График зависимости рассеиваемой мощности от тока и времени включения иллюстрирует эту проблему. Высокая температура внутри кристалла тиристора может не только вызвать ложное срабатывание, но и помешать переключению.

В резонансных инверторах на тиристорах проблема запирания решается сама собой, там выброс напряжения обратной полярности приводит к запиранию тиристора, при условии, что воздействие это достаточно длительное.

Так выявляется главное преимущество полевых транзисторов перед тиристорами. Полевые транзисторы способны работать на частотах в сотни килогерц, и управление сегодня не является проблемой.

Тиристоры же будут надежно работать на частотах до 40 килогерц, ближе к 20 килогерцам. Это значит, что если бы в современных инверторах использовались тиристоры, то аппараты на достаточно высокую мощность, скажем, на 5 киловатт, получались бы весьма громоздкими.

В этом смысле полевые транзисторы способствуют тому, что инверторы получаются более компактными за счет меньшего размера и веса сердечников силовых трансформаторов и дросселей.

Чем выше частота, тем меньшего размера требуются трансформаторы и дроссели для преобразования одной и той же мощности, это знает каждый, кто знаком со схемотехникой современных импульсных преобразователей.

Безусловно, в некоторых применениях тиристоры оказываются очень полезными, например , работающие на сетевой частоте 50 Гц, в любом случае выгоднее изготавливать на тиристорах, они получаются дешевле, чем если бы там применялись полевые транзисторы.

А в , например, выгоднее использовать полевые транзисторы, именно в силу простоты управления переключением и высокой скорости этого переключения. Кстати, при переходе с тиристорной схемы на транзисторную, несмотря на большую стоимость последних, из приборов исключаются лишние дорогостоящие компоненты.

Андрей Повный


Рис. 11.5 Разрез (а), структурная (б) и принципиальная (в) схемы замещения тиристора двумя транзисторами

Для объяснения теории работы тиристора широко используют схему замещения двумя транзисторами VT1 и VT2 (рис.11.5). В этой схеме тиристор мысленно разрезается и раздвигается по переходу j 2 на два транзистора VT1–p 1 –n 1 –p 2 , VT2–n 1 –p 2 –n 2 , соединенных между собой по схеме с ОЭ. При этом для объяснения работы данной схемы можно выделить две цепи: первая цепь – замыкающаяся через Э1-Б1-К2-Э2, вторая цепь – Э1-К1-Б2-Э2.

Рассмотрим основные соотношения между токами транзисторов в схеме замещения.

11.7.1 Принцип работы тиристора по схеме замещения при IG=0

Рассмотрим работу схемы замещения при токе управления IG=0.

Из схемы (рис. 11.5, в) видно:

Ток IК1 в VT1 I K1=IЭ1∙α1+IKO1 (11.1)

Ток IК1 одновременно является IБ2 , т.е. IБ2=IК1 (11.2)
Ток IК2VT2 равен IK2=IЭ2∙α2+IKO2 (11.3)
Ток IК2 одновременно является IБ1 , т.е. IБ1=IK2 (11.4)
где IЭ1, IБ1, IК1 – токи эмиттера, базы и коллектора VT1;

IЭ2, IБ2, IК2 – токи эмиттера, базы и коллектора VT2;

α1, α2 – коэффициенты передачи тока VT1 и VT2;

IKO1, IKO2 – обратный коллекторный ток VT1 и VT2.

Обозначим через ID общий ток утечки p–n перехода j2 , тогда

ID=IKO1+IKO2 . (11.5)
Из схемы замещения можно записать, что ток анода IA и катода IK равны:

IA = IK=IЭ1=IЭ2= IK1+ IK2 ; (11.6)

Подставим значение IK1 и IK2 из (11.1) и (11.3) получим:

IA = IA∙α1+ IA∙α2+ID ; (11.7)

Решим уравнение (11.7) относительно IA найдем

IA=ID /(1–(α1+α2)). (11.8)

Формула (11.8) является основным уравнением для объяснения физических процессов в тиристоре. Используя ее, рассмотрим особенности работы тиристора на участке ОА, когда тиристор закрыт, на АВ – процесс открытия, ВС – включенное состояние.

В транзисторах при малых значениях токов и IK коэффициенты α1 и α2 малы и (α1+ α2 ) < 1, т.е транзисторы VT1 и VT2 закрыты (тиристор закрыт) – участок ОА ВАХ (рис. 11.3).

С ростом тока IA , а следовательно IЭ1 , IK1 , IЭ2 и IK2

(α1+ α2 ) ≥ 1. (11.9)

Это объясняется тем, что через переход j 2 протекает незначительный ток утечки I D (мА или мкА), поэтому ток I K 1 =I Э1 α 1 будет очень мал. Следовательно, ток I Б2 =I К1 также мал и VT2 практически закрыт, поэтому ток по цепи 1 будет очень мал. Так как VT2 закрыт, то ток по цепи 2 будет мал, следовательно, VT1 будет практически закрыт, т.е. VT1 и VT2 удерживают друг друга в закрытом состоянии.




(11.10)
С увеличением тока I A на участке АВ (α1+ α2 ) увеличится, и в точке В (α1+ α2 )=1, поэтому из (11.8) следует, что ток IA резко возрастает, тиристор открывается

Напряжение между А и К уменьшается до падения напряжения на открытых переходах j1 , j2 , j3 (участок ВС ВАХ). При дальнейшем увеличении напряжения UF ВАХ тиристора аналогична ВАХ диода – участок CD.

11.7.2 Принцип работы тиристора при IG>0 (по схеме замещения)

Рассмотрим работу тиристора по схеме замещения при включении тока управления IG . В этом режиме под действием напряжения управления UG электроны из области n2 дополнительно инжектируются в область p2 , поэтому ток через j2 возрастает.

Для этого режима можно записать следующее уравнение:

IА=IК=IАa1+IАa2+IGa2+ID . (11.11)

Откуда, решив (11.11) относительно IA

IА=(ID+IGa2)/ (11.12)

Из (11.11) видно, что за счет тока IG нарастание тока происходит быстрее и a1+a2 приближается к 1 при меньших напряжениях UF . При токе IG2>IG1 напряжение переключения U(ВО)2 тиристора в открытое состояние происходит при меньшем значении U(ВО)1 .

Если IG=IGT , называемым отпирающим током управления, то ВАХ тиристора будет повторять ВАХ диода (рис. 11.3).

11.8 Конструктивное выполнение штыревого тиристора


Как и силовые диоды, тиристоры выполняются двух модификаций: штыревые и таблеточные. Отличительной особенностью от диодов служит изолированный вывод управляющего электрода (УЭ).

Недостаток конструкции: выпрямительный элемент жестко припаян к конструкции. У таблеточных тиристоров он как бы “плавает” (это хорошо).

gastroguru © 2017