Основные виды рычажных механизмов. Подъёмная сила Зубчатые механизмы

Основные виды рычажных механизмов.

1. Кривошипно-ползунный механизм.

а) центральный (рис.1);

б) внеосный (дезоксиальный) (рис.2);

е - эксцентриситет

Рис. 2

1-кривошип, т.к. звено совершает полный оборот вокруг своей оси;

2-шатун, не связан со стойкой, совершает плоское движение;

3-ползун (поршень), совершает поступательное движение;

1 - кривошип;

2 - камень кулисы (втулка) вместе с зв.1 совершает полный оборот вокруг А (w1 и w2 одно и тоже), а также движется вдоль зв.3, приводя его во вращение;

3 - коромысло (кулиса).

В процессе проектирования конструктор решает две задачи:

· анализа (исследует готовый механизм);

· синтеза (проектируется новый механизм по требуемым параметрам);

Лекция 2.

Глава 1. Анализ рычажных механизмов .

В данной главе будут рассмотрены вопросы:

1. структурный анализ механизма (изучение строения механизма);

2. изучение классов и видов кинематических пар.

3. определение числа степеней свободы механизма и определение наличия или отсутствия избыточных связей; в случае наличия - дать рекомендации по способу их устранения;

4. кинематический анализ механизма.

Примечание :

Кинематическая пара существует, если не происходит деформации звеньев, образующих эту пару, и не должно происходить отрыва звеньев одно от другого, образующих кинематическую пару.

Примечание:

Ограничения, накладываемые на независимые движения звеньев, образующих кинематическую пару, называются - условия связи S.

Число степеней свободы механизма

где Н - подвижность .

Любое незакрепленное тело в пространстве имеет 6 степеней свободы, на плоскости - 3.

Классификация кинематических пар проводят либо числу связей, либо по числу подвижностей:

Число связей Класс КП Число подвижностей

S=1 P I H=5

S=2 P II H=4

S=3 P III H=3

S=4 P IV H=2

S=5 P V H=1

Существует 5 классов кинематических пар.

Примеры различных КП смотри рис. 4-95.

Кинематические пары по характеру контакта звеньев, образующих КП, разделяют на:

1. низшие:

· вращательные;

· поступательные;

2. высшие.

Контакт звеньев в низшей КП осуществляется по поверхности. Контакт звеньев в высшей КП - либо по линии, либо в точке.

§1.2 Определение числа степеней свободы рычажных механизмов.

1.2.1 Плоские механизмы.

В плоском механизме все звенья движутся в одной плоскости, все оси параллельны друг другу и перпендикулярны плоскости механизма.

ФОРМУЛА ЧЕБЫШЕВА : W пп =3n -2p н -p в ,

Где n - число подвижных звеньев механизма, р н - число низших КП, р в - число высших КП.

Рис.1.2.1

1.2.2 Пространственные механизмы.

В пространственном механизме оси непараллельны, звенья могут двигаться в разных плоскостях.

W пр = 6n - (S 1 + S 2 + S 3 + S 4 + S 5)

Допустим, что механизм, изображенный на рис.1.2.1 - пространственный и все кинематические пары 5-го класса, т.е. одноподвижны A V ,B V ,C V ,D V , тогда

W пр = 6n - (5p V +4p IV +3p III +2p II+ p I)

W пр = 6 . 3 - 5 . 4 = -2 à статически неопределимая ферма.

Для получения W действ =0, необходимо добавить 3 движения.

q= W действ - W пр = 1 - (-2) = 3,

где q - избыточные связи .

Для того чтобы их устранить, надо изменить класс некоторых кинематических пар, при этом нельзя изменять класс КП А. Поэтому, сделаем КП В - сферическим шарниром, т.е. 3-го класса (добавим 2 подвижности), а КП С - 4-го класса (добавим 1 подвижность). Тогда

W пр = 6 . 3 - (5 . 2 + 4 . 1 + 3 . 1) = 18 - 17 = 1

ФОРМУЛА СОМОВА-МАЛЫШЕВА: W пр = 6 . n - ΣS i + q

§1.3 Кинематический анализ рычажных механизмов.

1.3.1 Основные понятия и определения.

Зависимость линейных координат в какой-либо точке механизма от обобщенной координаты - линейная функция положения данной точки в проекциях на соответствующие оси координат .

Зависимость угловой координаты какого-либо звена механизма от обобщенной координаты - угловая функция положения данного звена.

Первая производная линейной функции положения точки по обобщенной координате - линейная передаточная функция данной точки в проекциях на соответствующие оси координат (иногда называют «аналог линейной скорости…»)

полная скорость т. С будет

Первая производная угловой функции положения звена по обобщенной координате - передаточное отношение .

Вторая производная линейной функции положения по обобщенной координате - аналог линейного ускорения точки в проекциях на соответствующие оси .

Вторая производная угловой функции положения звена по обобщенной координате - аналог углового ускорения звена .

1.3.2 Аналитический способ определения кинематических параметров рычажных механизмов.

Дано: w 1 , l AB , l BS 2 , l BC , l AC

Определить: v i , a i , w 2 , e 2 .

Для исследования плоских рычажных механизмов для решения данной задачи целесообразно использовать метод проецирования векторного контура на оси координат.

Для определения функции положения точки С представим длины звеньев в виде векторов.

Условие замкнутости данного контура:

(3)

рис.1.3.2 из (3) следует, что

(4)

Лекция 3.

Продифференцируем (3) по обобщенной координате:

(5)

Продифференцируем (2) по обобщенной координате:

Если необходимо определить функции положения центра масс, то вы делим векторный контур ABS 2

Условие замкнутости данного векторного контура имеет вид:

(6)

(7)

Продифференцируем (7) по обобщенной координате и получим аналоги линейных скоростей точек S 2 в проекциях на оси х и у:

(9)

Глава 2. Анализ машинного агрегата.

В данной главе будут рассмотрены следующие вопросы:

1. Силы и моменты, действующие в машинном агрегате.

2. Переход от расчетных схем машинных агрегатов к динамическим моделям.

3. Расчет усилий в кинематических парах основного механизма рабочей машины.

4. Определение законов движения главного вала (входного звена) рабочей машины под действием приложенных сил и моментов при различных режимах работы машинного агрегата.

§2.1 Силы и моменты, действующие в машинном агрегате.

2.1.1 Движущиеся силы и моменты F д и М д .

Работа движущих сил и моментов за цикл положительна: А д >0.

Цикл - промежуток времени, по истечению которого все кинематические параметры принимают первоначальное значение, а технологический процесс, происходящий в рабочей машине, начинает повторяться вновь.

2.1.2 Силы и моменты сопротивления (F с, M с).

Работа сил и моментов сопротивления за цикл отрицательна: А c <0.

2.1.3 Силы тяжести (G i).

Работа силы тяжести за цикл равна нулю: А Gi =0.

2.1.4 Расчетные силы и моменты (Ф Si, M Фi).

Ф Si, M Фi - Главные векторы сил инерции и главные моменты от сил инерции.

2.1.5 Реакции в кинематических парах (Q ij).

§2.2 Понятие о механических характеристиках.

Механическая характеристика 3-х фазного асинхронного двигателя.

Индикаторная диаграмма ДВС

H - ход поршня в поршневой машине

(расстояние между крайними

положениями поршня)

Индикаторная диаграмма насоса

Как правило, из паспорта известен диаметр поршня, по нему можно определить площадь S п = p . d 2 /4, тогда сила: F=p . S п

Правило знаков сил и моментов :

· Сила считается положительной, если она по направлению совпадает с направлением движения того звена, к которому эта сила приложена.

· Момент считается положительным, если его направление совпадает с направлением угловой скорости вращения данного звена.

Имея механическую характеристику поршневой машины и учитывая правило знаков, то можно перестроить в график сил (см. лабораторную работу №4).

Основной вывод:

В течение всего цикла работы поршневой машины сила, приложенная к поршню, будет изменяться как по величине, так и по направлению, это в свою очередь приводит к колебаниям угловой скорости главного вала рабочей машины.

§2.3 Понятие о расчетной схеме машинного агрегата и переход от нее к динамической модели.

На расчетной схеме машинного агрегата отмечают основные силовые факторы, действующие в машинном агрегате; основные массы звеньев, влияющих на закон движения машинного агрегата; и основные жесткости валов. На рис.5-92 показан переход от реальной схемы к расчетной схеме (а) и от нее к динамической модели.

Рычажные механизмы. Часть 1

К рычажным механизмам относятся механизмы, состоящие из звеньев совершающих вращательное, поступательное или плоско – параллельное движение. Эти механизмы отличаются простотой, высоким КПД и большой нагрузочной способностью, однако они не могут обеспечить любой закон движения ведомого звена, что в некоторой степени ограничивает их применение в технике.
В технологическом оборудовании широко используются следующие виды рычажных механизмов: механизмы шарнирного четырехзвенника, кривошипно-шатунные механизмы, кулисные механизмы. Рассмотрим примеры и конструктивные особенности рычажных механизмов.

Механизмы шарнирного четырехзвенника

Механизмы шарнирного четырехзвенника в свою очередь делятся на три типа: двухкривошипные, в которых ведущее и ведомое звено могут совершать полный оборот (см. Рис. 1а), кривошипно-коромысловые, в которых ведущее звено кривошип вращается, а ведомое коромысло совершает качательное движение (см. Рис. 1б) и двух коромысловые, в которых и ведущее и ведомое звенья совершают качательное движение (см. Рис. 1в).

Примером двухкривошипного механизма может служить механизм переноса длинномерной заготовки из углового проката со стеллажа на рольганг технологического оборудования, конструктивная схема которого показана на Рис. 2. Он состоит из двух четырехлучевых звездочек 1 и 2, установленных на валах 3 и шарнирно соединенных между собою посредством осей 5 четырьмя ложементами 4, в которые укладываются при переносе заготовки 6, образуя, таким образом, четыре двухкривошипных механизма. При этом валы 3 на подшипниках скольжения расположены в корпусах 7 и 8, которые посредством кронштейнов 9 установлены на общей раме 10.

Еще одним представителем механизмов шарнирного четырехзвенника являются двухкоромысловые механизмы (см. Рис. 3), которые применяется, как правило, для изменения (увеличения, уменьшения) угла качания ведомого коромысла или изменения создаваемого на нем усилия.

На Рис. 3а показан двухкоромысловый механизм, конструкция которого (соотношение длин и взаимное расположение коромысел 1 и 3) позволяет увеличить угол качания β α ведущего коромысла 1. На Рис. 3б показан двухкоромысловый механизм, конструкция которого (соотношение длин и взаимное расположение коромысел 1 и 3) позволяет уменьшить угол качания β ведомого коромысла 3 по отношению к углу качания α ведущего коромысла 1. Если в механизме, показанном на Рис. 3а , ведущим будет звено 3 совершающее вращение с полным оборотом, а в механизме, показанном на Рис. 3б , его ведущее звено 1 будет совершать полный оборот, то эти двухкоромысловые механизмы превратятся в кривошипно-коромысловые. Данные механизмы редко применяются в качестве силовых исполнительных механизмов машин и оборудования, поскольку могут работать только при ограниченной величине углов качания (60 – 90 град.) из-за возрастающей величины потерь при передаче усилий от ведущего звена к ведомому, при увеличении углов качания кривошипов. Такие механизмы обычно используются как вспомогательные, работающие с небольшими скоростями и нагрузками. Рассмотренный тип механизмов часто используется в качестве исполнительного в различного рода кантователях.

Рис. 4. Кантователь для опрокидывания стола формовочной машины.

На Рис 5 показана конструкция сварочного кантователя, поворотные губки
которого являются ведомыми коромыслами шарнирных четырехзвенников имеющих общее ведущие коромысло. Он содержит, установленный на раме 1, приводной пневмоцилиндр 2, шток 3 которого посредствам двуплечего рычага 7, ведомое плечо которого является ведущим коромыслом двух шарнирных четырехзвенников содержащих тяги 8 и 9, шарнирно соединенные с устновленными на общей оси 4 поворотными губками 5 и 6, являющимися ведомыми коромыслами этих четырехзвенников.
Работает кантователь следующим образом. После окончания сварки первого шва изделия 11 подается команда на включение пневмоцилиндра 2, шток 3 которого втягивается и сводит поворотные губки 5 и 6, устанавливая, при этом, свариваемое изделие 11 в вертикальное положение (в это время опорные ролики 10 перекатываются по полке изделия). В результате этого центр тяжести свариваемого изделия 11 перемещается на противоположную сторону опорной призмы (на Рис 5 не показана) и при последующем разведении рычагов 5 и 6, что происходит при выдвижении штока 3 пневмоцилиндра 2, изделие укладывается в положение удобное для сварки второго шва.


конструктивного исполнения механизмов шарнирного
четырехзвенника (см. Рис. в таб.) с описание их работы


Кривошипно-шатунные механизмы

Кривошипно-шатунные механизмы из всех видов рычажных механизмов получили наибольшее распространение в технике благодаря простоте кинематики, позволяющей сравнительно легко преобразовывать вращательное движение в поступательное, что позволяет использовать их в исполнительных механизмах технологического оборудования, например, в механических прессах, и поступательное движение во вращательное, что позволяет их использовать как исполнительный меха- низм двигателя внутреннего сгорания. Кривошипно-шатунный механизм состоит из, установленного в станине с возможностью вращения кривошипа 1 (коленчатого или эксцентрикового вала), шарнирно соединенного с ним шатуна 2, который шарнирно соединен с ползуном 3, осуществляющим при вращении кривошипа 1 возвратно-поступательное движение в направляющих станины 4 (см. Рис. 9).

Рис. 9. Кривошипно-шатунный механизм.

В данном разделе полной версии статьи содержится 9 примеров
конструктивного исполнения кривошипно – шатунных

Кулисные механизмы

Кулисные механизмы – это механизмы, содержащие два специфических звена: кулису и кулисный камень (см. Рис. 16), каждое из которых, совершая вращательное или качательное движение, поступательно перемещаются друг относительно друга. Наличие двух таких звеньев в механизме приводит к различной скорости перемещения ведомого звена, при его прямом и обратном ходе, что в отдельных случаях является преимуществом механизма, а в отдельных случаях недостатком и в целом определяет область его использования. Существует два основных типа кулисных механизмов различающихся по тому, какое движение совершает кулиса, это механизмы с качательным и вращательным движением кулисы

Рис. 16. Типы кулисных механизмов

На Рис. 16а показан механизм с качательным движением кулисы состоящий из кривошипа 1, на оси 2 которого размещается кулисный камень 3, имеющий возможность поступательного перемещения в пазу кулисы 4, шарнирно установленной на неподвижной стойке посредством оси 5 и совершающей качательное движение при вращении кривошипа 1. При этом кулиса 4 совершает прямой ход при повороте кривошипа 1 на угол а , а обратный ход при повороте кривошипа на угол В , что приводит к различию скоростей прямого и обратного хода по причине неравенства этих углов. На Рис. 16б показан механизм с вращательным движением кулисы состоящий из кривошипа 1, на оси 2 которого размещается кулисный камень 3 и кулисы 4, шарнирно установленной на неподвижной стойке посредством оси 5 и совершающей при вращении кривошипа 1 вращательное движе-ние. При такой схеме кулисного механизма различие скорости прямого и обратного хода кулисы также определяется разницей углов а и В .
По сравнению с механизмом шарнирного четырехзвенника используемого для таких же целей (см. Рис. 3), кулисный механизм позволяет проще обеспечить компоновку ведущего кривошипа и ведомой кулисы разместив их симметрично относительно общей оси, что бывает необходимо при проектировании. Но, при этом кулисный механизм имеет увеличенные потери за счет дополнительного трения скольжения в кулисной паре и поэтому находит применение в основном в мало нагруженных, вспомогательных механизмах технологического оборудования.

В данном разделе полной версии статьи содержится 6 примеров
конструктивного исполнения кулисных
механизмов (см. Рис. в таб.) с описанием их работы

Рычажные механизмы с дополнительными
конструктивными элементами

При использовании рычажных механизмов в составе технологического оборудования и оснастки для обеспечения эффективной работы в него встраиваются дополнительные конструктивные элементы, которые позволяют решать следующие задачи:
− регулировать величину хода выходного звена (ползуна, рычага, кулисы),
− регулировать исходное (конечное) положение выходного звена,
− предохранять детали механизма от поломки,
− сообщать выходному звену сложное движение
− включать и выключать работу механизма,
Рассмотрим примеры конструктивного выполнения таких рычажных механизмов. Регулирование величины хода выходного звена рычажного механизма осуществляется двумя способами, изменением соотношения плеч рычага, или изменением величины эксцентриситета ведущего кривошипа.

Рис 26 Конструкция устройства, позволяющего регулировать длину его ведущего плеча.

На Рис 26 показана конструкция устройства, встроенного в рычаг малонагруженного рычажного механизма, позволяющего регулировать длину его ведущего плеча. В этот рычаг, состоящий из ведущего 1 и ведомого 2 плеч и установленный на оси 3, встроен палец 6, шарнирно, посредствам оси 5 соединенный с ведущей тягой 4 и фиксируемый в требуемом положении в пазу 10, а в его резьбовое отверстие пропущен регулировочный винт 7. При этом, ведомое плечо 2 рычага шарнирно посредствам оси 8 соединено с ведомым звеном рычажного механизма. При выполнении регулировки длины ведущего плеча 1 рычага производится раскручивание гайки 9, затем перемещение в ту или другую сторону пальца 6 по пазу ведущего плеча 1 рычага регулировочным винтом 7 и после этого выполняется последующее стопорение пальца 6 гайкой 9.

Рис 27 Конструкция кривошипно – шатунного механизма с устройством для регулировки величины хода его выходного звена

На Рис 27 показана конструкция кривошипно – шатунного механизма со встроенным устройством для регулировки величины хода его выходного звена, которое выполнено в виде промежуточного двуплечего рычага с регулируемой длиной ведущего плеча, Он содержит ведущий кривошипный вал 1, на мотылевой шейке которого установлен шатун 2, шарнирно соединенный посредствам оси 3 с промежуточным двуплечим рычагом 5, установленным на станине посредствам оси 6, а с помощью оси 7 соединенным с ведомой тягой 8. При этом на промежуточном рычаге 5 посредствам оси 9 шарнирно установлен ходовой винт 10, на котором расположена гайка (гайка на Рис 34 не показан) шарнирно соединенная с осью 3 шатуна 2 и имеет возможность, как ползушка, перемещаться в радиусном пазу 4 промежуточного рычага 5. При вращении ходового винта 10 шатун 2 поворачивается на угол αi что приводит к изменению величины ведущего плеча промежуточного рычага 5, а изменяющееся при этом, соотношение длин его ведомого и ведущего плеч позволяет менять величину хода ведомой тяги 8 механизма. Рассмотренное устройство для регулировки хода выходного звена механизма выгодно отличается от рассмотренного ранее тем, что оно позволяет при выполнении регулировки сохранять исходное положение выходного звена (тяги 8), что обеспечивается наличием в промежуточном рычаге 5 радиусного паза 4, центр которого совпадает с осью кривошипного вала 1, поэтому при выполнении регулировки поворот шатуна 2 не меняет положение промежуточного рычага 5.

В данном разделе полной версии статьи содержится 12 примеров
конструктивного исполнения рычажных механизмов
с дополнительными конструктивными элементами
(см. Рис. в таб.) с описание их работ ы

Зубчато – рычажные механизмы.

Комбинация рычажных механизмов с зубчатыми передачами позволяет создать механизмы с новыми нехарактерными для обоих свойствами. Чаще всего такие механизмы используются для получения выстоя выходного звена, но в ряде случаев они могут позволять получать различные траектории движения выходного звена, а также изменять величину и скорость его перемещения

Рис 36 Конструкция зубчато – рычажного механизма позволяющая получить удвоенное число возвратно-поступательного перемещения ведомого звена по отношению к ведущему.

На Рис 36 показана конструкция зубчато – рычажного механизма позволяющая получить удвоенное число возвратно-поступательного перемещения ведомого звена по отношению к ведущему. Ведущим элементом этого привода является тяга 1, которая сообщает качательное движение рычагу 2, связанному с зубчатым колесом 3 и свободно поворачивающимся с этим колесом на оси 4. Зубчатое колесо 3 сообщает вращение колесу 5, связанному с рычагом 7, установленным на оси 6. Палец 10 рычага 7, перемещаясь в пазу кулисы 9, сообщает движение тяге 8. Оси 4 и 6 смонтированы в неподвижном корпусе 11, установленном на станине. На Рис 36б,в тяга 1 показана в крайних правом и левом положениях, что соответствует началу и середине цикла ее движения. Кулиса 9 в обоих случаях занимает одно и то же положение, поскольку она совершает полный цикл и возвращается в исходное положение. Рычаг 2 перемещается тягой 1 из положения, показанного на Рис 36а влево, вследствие чего, зубчатое колесо 3 совершает определенную часть оборота. Зубчатое колесо 5, находящееся в зацеплении с колесом 3, совершает такой же поворот в противоположном направлении. Рычаг 7, соединенный с колесом 5 поворачивается вместе с ним, а палец 10 перемещается вниз по пазу кулисы 9. До пересечения пальцем 10 центра оси 6, кулиса поворачивается вправо и доходит до крайнего положения (см. Рис 36в). При дальнейшем движении тяги 1 палец 10 опускается ниже центра оси 6 и перемещает кулису 9 в обратном направлении, т. е. влево. В момент достижения тягой 1 крайнего левого положения кулиса 9 также занимает свое крайнее левое положение, делая двойной ход за время совершения тягой 1 только хода вперед. За время совершения тягой 1 обратного хода кулиса 9 совершает еще один двойной ход.

В данном разделе полной версии статьи содержится 4 примера
конструктивного исполнения зубчато – рычажных
механизмов (см. Рис. в таб.)



Полная версия статьи, включает 24 страниц текста и 41 чертеж.

ЛИТЕРАТУРА.

1. Игнатьев Н. П. Основы проектирования Азов 2011г.
2. Игнатьев Н. П. Проектирование механизмов Азов 2015г.

Статья написана на основании информации из соответствующих разделов работы автора «Основы проектирования» изданной в 2011г и работы автора «Проектирование механизмов» , изданной в 2015г.

Для приобретения полной версии статьи добавьте её в корзину,

Стоимость полной версии статьи 200 рублей.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ТРАНСПОРТА

Кафедра Детали машин

ОБЗОР ОСНОВНЫХ ВИДОВ МЕХАНИЗМОВ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям по Теории механизмов и машин для студентов специальностей НР-130503, ПСТ-130501, НБ-130504, МОП-130602, АТХ-190601, СТЭ-190603, ПДМ-190205, СП-150202, ПТИ-260703, ТМ-151001, МКC-151002, МХП-240801, МСО-190207

очной и заочной полной и сокращенной форм обучения

Тюмень 2007

Утверждено редакционно-издательским советом

Тюменского государственного нефтегазового университета

Составители: доцент, к.т.н. Забанов Михаил Петрович

профессор, д.т.н. Бабичев Дмитрий Тихонович

ассистент, Панков Дмитрий Николаевич

© государственное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

В процессе занятия необходимо ознакомиться с основными группами и видами механизмов, их графическими изображениями. Научиться представлять реальный механизм в виде схемы.

В отчете необходимо изобразить и описать классические виды механизмов.

Ведущей отраслью современной техники является машиностроение. Про­гресс машиностроения определяется созданием новых высокопроизводитель­ных и надежных машин. Решение этой важнейшей проблемы основывается на комплексном использовании результатов многих научных дисциплин и, в пер­вую очередь, теории механизмов и машин.

По мере развития машин содержание термина "машина" изменялось. Для современных машин дадим следующее определение: машина есть устройство, создаваемое человеком для преобразования энергии, материалов и информации с целью облегчения физического и умственного труда, увеличения его производительности и частичной или полной замены человека в его трудовых и физиологических функциях.

По выполняемым машинами функциям их делят на следующие классы:

1) Энергетические машины

2) Транспортные машины

3) Технологические машины

4) Контрольно-управляющие машины

5) Логические машины

6) Кибернетические машины

Определение термина "механизм" неоднократно менялось по мере того, как появлялись новые механизмы.

Механизм есть система тел, предназначенная для преобразования движения одного или нескольких твердых тел в требуемые движения других тел. Если в преобразовании движения кроме твердых тел участвуют жидкие или газообразные тела, то механизм называется соответственно гидравлическим или пневматическим. С точки зрения функционального назначения механизмы делятся на следующие виды:

1) Механизмы двигателей и преобразователей

2) Передаточные механизмы

3) Исполнительные механизмы

4) Механизмы управления, контроля и регулирования

5) Механизмы подачи, транспортировки и сортировки обрабатываемых изделий и объектов

6) Механизмы автоматического счета, взвешивания и упаковки готовой продукции

Основным признаком механизма является преобразование механического движения. Механизм входит в состав многих машин, т. к. для преобразования энергии, материалов и информации требуется обычно преобразование движения получаемого от двигателя. Нельзя отождествлять понятия "машина" и "механизм". Во-первых, кроме механизмов в машине всегда имеются дополни­тельные устройства, связанные с управлением механизмами. Во-вторых, есть машины, в которых нет механизмов. Например, в последние годы созданы тех­нологические машины, в которых каждый исполнительный орган приводится в движение от индивидуального электро- или гидродвигателя.

При описании механизмов, они были разделены на отдельные группы по признаку их конструктивного оформления (рычажные, кулачковые, фрикцион­ные, зубчатые и др.)

Механизмы образуются последовательным присоединениям звеньев к начальному механизму.

ЗВЕНО – одна или несколько неподвижно соединенных друг с другом деталей, входящих в механизм и движущихся, как одно целое .

ВХОДНОЕ ЗВЕНО – звено, которому сообщается движение, преобразуемое механизмом в требуемые движения других звеньев. Входное звено соединено с двигателем либо с выходным звеном другого механизма.

ВЫХОДНОЕ ЗВЕНО – звено, совершающее движение, для выполнения которого предназначен механизм. Выходное звено соединено с исполнительным устройством (рабочим органом, указателем прибора), либо со входным звеном другого механизма.

Звенья соединяются друг с другом подвижно посредством кинематических пар: вращательных (шарнир) и поступательных (ползун).

ТРАЕКТОРИЯ движения точки (звена) – линия перемещения точки в плоскости. Это может быть прямая линия или кривая.

РЫЧАЖНЫЕ МЕХАНИЗМЫ

Рычажными механизмами называют механизмы, в которые входят жесткие звенья, соединенные между собой вращательными и поступательными кинема­тическими парами. Простейшим рычажным механизмом является двухзвенный механизм , состоящий из неподвижного звена-стойки 2 (Рис.1.1 ) и подвижного рычага 1 , имеющего возможность вращаться вокруг неподвижной оси (обычно это начальный механизм).

Рис.1.1 Двухзвенный рычажный механизм

К двухзвенным рычажным механизмам относятся механизмы многих ро­тационных машин: электромоторов, лопастных турбин и вентиляторов. Меха­низмы всех этих машин состоят из стойки и вращающегося в неподвижных подшипниках звена (ротора).

Более сложными рычажными механизмами являются механизмы, состоя­щие из четырех звеньев, так называемые четырехзвенные механизмы .

На Рис.1.2 показан механизм шарнирного четырехзвенника, состоящего из трех подвижных звеньев 1, 2, 3 и одного неподвижного звена 4. Звено 1 , со­единенное со стойкой, может совершать полный оборот и носит название кри­вошипа. Такой шарнирный четырехзвенник, имеющий в своем составе один кривошип и одно коромысло называется кривошипно-коромысловым меха­низмом , где вращательное движение кривошипа посредством шатуна преобразуется в качательное движение коромысла. Если кривошип и шатун вытянуты в одну линию, то коромысло займет крайнее правое положение, а при наложении друг на друга – левое.

Рис. 1.2 Механизм шарнирного четырехзвенника

Примером такого механизма является механизм представленный на Рис.1.3 , где звено 1 – кривошип (входное звено), звено 2 – шатун, звено 3 – ко­ромысло. Точка M S двигаясь по кривой описывает траекторию . Одни траектории могут быть воспроизведены рычажными механизмами теоретически точно, другие – приближенно, с достаточной для практики степе­нью точности.

Рассматриваемый механизм, называемый симметричным механизмом Чебышева, часто применяют в качестве кругового направляющего механизма, у которого АВ = ВС = ВМ = 1. При указанных соотношениях

Рис. 1.3 Кривошипно-коромысловый механизм

точка М шатуна АВ описывает траекторию, симметричную относительно оси n - п . Угол наклона оси симметрии к линии центров СО определяется: ÐМСО = π – Ω / 2. Часть траектории точки М является дугой окружности радиуса О 1 М, что может быть использовано в механизмах с остановкой выходного звена.

Другим примером четырехзвенника является широко распро­страненный в технике кривошипно-ползунный механизм (Рис. 1.4 ).

Рис. 1.4 Кривошипно-ползунный механизм

В этом механизме вместо коромысла устанавливается ползун, движущийся в непод­вижной направляющей. Этот кривошипно-шатунный механизм применяют в поршневых двигателях, насосах, компрессорах и т.д. Если эксцентриситет е равен нулю, то получим центральный кривошипно-ползунный механизм или аксиальный. При е не равном нулю кривошипно-ползунный механизм называ­ется нецентральным или дезаксиальным. Здесь вращение кривошипа ОА через шатун АВ преобразуется в возвратно-поступательное движение ползуна. Есте­ственно крайние положения ползуна, будут при расположении кривошипа и шатуна в одну линию.

Если в рассмотренном механизме заменить неподвиж­ную направляющую на подвижную, которая называется кулисой, то получим четырехзвенный кулисный механизм с кулисным камнем. Примером такого механизма может слу­жить кулисный механизм строгального станка (Рис.1.5 ). Кривошип 1 , враща­ясь вокруг оси, через кулисный камень 2 заставляет кулису 3 совершать качательное движение. При этом кулисный камень относительно кулисы движется возвратно-поступательно.

Рис. 1.5 Четырехзвенный кулисный механизм

Крайние положения кулисы будут при перпендикулярном расположении к ней кривошипа. Построить такие положения просто: изображается окружность радиусом равным длине кривошипа (траектория движения точки А ), и проводятся касательные из оси вращения кулисы.

Таким образом звенья могут совершать поступательное , вращательное или сложное движения.

] Учебник для машиностроительных вузов. 2-е издание, переработанное и дополненное. Авторы: Алексей Николаевич Банкетов, Ю.А. Бочаров, Н.С. Добринский, Е.Н. Ланской, В.Ф. Прейс, И.Д. Трофимов. Под редакцией А.Н. Банкетова, Е.Н. Ланского.
(Москва: Издательство «Машиностроение», 1982)
Скан, обработка, формат Djv: АЧ, 2003

  • КРАТКОЕ ОГЛАВЛЕНИЕ:
    Предисловие (3).
    Введение (5).
    Раздел I. КРИВОШИПНЫЕ МАШИНЫ
    Глава 1. Классификация кривошипных машин, кинематика и статика кривошипно-рычажных механизмов (10).
    Глава 2. Ползуны, шатуны и коленчатые валы (30).
    Глава 3. Муфты и тормоза (59).
    Глава 4. Зубчатые передачи, приводные валы, подшипники и средства защиты машин от перегрузки (77).
    Глава 5. Станины, подушки и фундаменты машин (93).
    Глава 6. Уравновешивание кривошипно-ползунных механизмов. Динамика кривошипных прессов (116).
    Глава 7. Энергетика и КПД кривошипных прессов (125).
    Глава 8. Система смазки и устройства по технике безопасности (137).
    Глава 9. Монтаж, наладка и исследования машин (145).
    Глава 10. Кривошипные прессы общего назначения (147).
    Глава 11. Вытяжные прессы (155).
    Глава 12. Кривошипные ножницы (165).
    Глава 13. Кузнечно-штамповочные автоматы для объемной штамповки (180).
    Глава 14. Листоштамповочные автоматы (210).
    Глава 15. Горячештамповочные кривошипные прессы (219).
    Глава 16. Чеканочные кривошипно-коленные прессы (223).
    Глава 17. Горизонтально-ковочные машины (231).
    Глава 18. Обжимные машины (241).
    Глава 19. Перспективы усовершенствования кривошипных прессов (248).
    Раздел II. ГИДРАВЛИЧЕСКИЕ ПРЕССЫ
    Глава 20. Основные понятия (251).
    Глава 21. Гидравлические прессы с насосным безаккумуляторным приводом (259).
    Глава 22. Гидравлические прессы с насосно-аккумуляторным приводом. (283).
    Глава 23. Гидравлические прессы с мультипликаторным приводом и КПД гидропрессовых установок (302).
    Глава 24. Клапаны, распределители и трубопроводы гидропрессовых установок (313).
    Глава 25. Основные детали гидравлических прессов (322).
    Глава 26. Основные тины гидравлических прессов. Перспективы развития прессостроения (338).
    Раздел III. МОЛОТЫ
    Глава 27. Общие сведения (351).
    Глава 28. Паровоздушные молоты (364).
    Глава 29. Приводные пневматические молоты (400).
    Глава 30. Гидравлические и газогидравлические штамповочные молоты (411).
    Глава 31. Газогидравлические высокоскоростные молоты (419).
    Глава 32. Взрывные высокоскоростные молоты (427).
    Глава 33. Фундаменты молотов (430).
    Глава 34. Перспективы усовершенствования молотов (437).
    Раздел IV. ВИНТОВЫЕ ПРЕССЫ
    Глава 35. Общие сведения (439).
    Глава 36. Теория винтовых прессов (454).
    Глава 37. Конструкция винтовых прессов и особенности расчета их деталей (479).
    Раздел V. РОТАЦИОННЫЕ МАШИНЫ
    Глава 38. Общие сведения. Правильные и гибочные машины (488).
    Глава 39. Дисковые ножницы (500).
    Глава 40. Ковочные вальцы, для продольной и поперечной вальцовки, специальные ротационные машины (509).
    Раздел VI. РОТОРНЫЕ И ИМПУЛЬСНЫЕ МАШИНЫ. СТАТЫ
    Глава 41. Роторные и роторно-конвейерные машины-автоматы (523).
    Глава 42. Импульсные машины и установки (535).
    Глава 43. Гидростатические и пневмостатические машины (550).
    Раздел VII. ЭЛЕМЕНТЫ ТЕОРИИ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ МАШИН (553).
    Список литературы (563).
    Предметный указатель (565).

Аннотация издательства: Дана классификация современных кузнечно-штамповочных машин, изложены основные принципы и методы расчета и конструирования узлов и деталей, приведены кинематические схемы.
Во 2-м издании (1-е издание 1970 г.) освещены новейший опыт создания прогрессивных кузнечно-штамповочных машин, а также перспективы развития в этой области.

Практически все автомобили на заводе снабжают домкратом. Как правило, простым ромбическим или рычажно-винтовым. В инструментальных магазинах выбор значительно шире

Домкрат - дальний родственник той мега-оглобле, которой Архимед собирался перевернуть нашу многострадальную планету. Спустя тысячелетие после эпохи великого геометра домкраты, ставшие более сложными механизмами уже из двух оглобель, широко применялись в просвещенной Европе как средство отжима замков, а иногда и целых городов посредством поднятия или разламывания городских ворот. Говорят также, что именно домкрат положил начало промышленному шпионажу. В Россию его привёз Петр Первый вместе с табаком, картофелем и запретом барбершопов. Собственно, слово dommekracht означает ни что иное как «подъёмник грузов». В наше время магазины, специализирующиеся на инструментах и автопринадлежностях, продают несколько их разновидностей, различающихся конструкцией и способом применения.

1. ГИДРАВЛИЧЕСКИЕ БУТЫЛОЧНЫЕ

от 700 до 25 000 ₽

Пик популярности этих домкратов пришёлся на середину прошлого века. Это надёжная прочная конструкция, представляющая собой два цилиндра, соединенных каналом, типа сообщающихся сосудов, и двух поршней, один из которых поднимает груз, а второй нагнетает давление с помощью рычага. Существует два типа таких домкратов - с выдвижной винтовой штангой и без неё. Они так и называются - одно- и двухштоковые (двухштоковые поднимают на большую высоту). Главный минус всех бутылочных гидравлических домкратов - большая начальная высота упора, а главный плюс в том, что их подъёмная сила может быть очень велика. Например, для грузовиков и спецтехники продаются домкраты, способные при собственном весе в несколько десятков килограммов поднимать до 100 тонн! Недостаток, определяющийся высотой подхвата, вынуждает тщательнее относиться к точкам установки пяты. Как правило, это или усиления на рёбрах кузовных деталей, или специальные площадки, или балка моста. У грузовиков и внедорожников - рычаги. С учётом того что бутылочные домкраты не самые устойчивые, техника безопасности требует при работе с автомобилем ставить его на дополнительные упоры. Стоимость - от 700 рублей за 2-тонного до 25 тыс. рублей за 100-тонного монстра.

2. БУТЫЛОЧНЫЕ ПНЕВМАТИЧЕСКИЕ

от 7 000 до 19 000 ₽

Отдельная каста домкратов - бутылочные пневматические. Нужны они там, где что-то приходится поднимать быстро и часто, поскольку это одно из главных их преимуществ. В отличие от гидравлических, где привод подъёмного механизма осуществляется вручную, с пневматическими домкратами работает компрессор. Понятно, что они не слишком часто встречаются в обычных гаражах и мелких мастерских. Характеристики пневматических бутылочных домкратов, их габариты и принцип действия аналогичны гидравлическим. Цена - от 7 до 19 тыс. рублей.

3. ГИДРАВЛИЧЕСКИЙ ЗАЦЕПНОЙ

от 10 000 до 74 000 ₽

В случаях когда обычный гидравлический домкрат бутылочного типа невозможно установить из-за малого дорожного просвета, используют зацепные домкраты. Особенно популярны они в местах, где работают тяжёлые складские погрузчики. Принцип действия зацепных домкратов такой же, как и бутылочных, но к подъёмному штоку присоединен L-образный зацеп. Они тяжелее аналогичных бутылочных, почти не отличаясь по грузоподъёмности. Есть рассчитанные на 2,5 т, есть - на 50 т. Высота подъёма зависит от конструкции, но в принципе она ниже бутылочного классического и уж тем более двухштокового. Если вам не нужно поднимать тяжёлые станки, то особого смысла доплачивать за сверхнизкий зацеп нет. Тем более что этим зацепом автомобиль практически не за что зацепить… Цена - от 10 до 74 тыс. рублей.

4. ПНЕВМАТИЧЕСКИЕ

от 20 000 ₽

Конструкция домкратов с приводом подъёмного устройства сжатым воздухом не ограничивается бутылочным типом. Есть ещё и те, у которых основу составляют воздухонепроницаемый мешок и система клапанов… В виде своего рода гармошки на металлической станине и со стальным подпятником или буквально в виде большого мешка. Первые особенно популярны там, где важна скорость - они способны поднять груз массой 2 т на высоту 380 мм за 5 секунд при рабочем давлении около 5 атм. При этом высота подхвата составит всего 165 мм, а необходимое давление обеспечит даже небольшой компрессор с ресивером. Правда, они не рассчитаны на длительное удержание груза и требуют дополнительного упора. Устойчивость же при подъёме обеспечивает встроенная в конструкцию телескопическая штанга. Промышленные «воздушные» домкраты довольно дороги - от 20 тыс. рублей.

5. ПОДКАТНЫЕ ДОМКРАТЫ

от 700 до 10 000 ₽

В наше время этот вид домкратов становится не менее популярным, чем бутылочные. В классическом исполнении он состоит из станины на колёсиках с горизонтальным гидроцилиндром и поднимающимся рычагом с упорной пятой разных конфигураций. Приводится в действие рукоятью, которая по совместительству может служить, скажем, баллонным ключом. Высота подхвата, как правило, не превышает 100 мм, а высота подъёма достигает 500 мм! Домкраты с ручным приводом обычно обладают умеренной грузоподъёмностью - от 1 до 5 т. Они довольно тяжёлые, габаритные и не предназначены для перевозки в легковом автомобиле. Могут работать на разных поверхностях, устойчивы, но предпочитают ровный твёрдый пол. Ценовая линейка широчайшая. Можно найти модель неизвестного производителя за 700 рублей и многофункциональное устройство от именитой фирмы за 10 тыс.

6. ДОМКРАТЫ НОЖНИЧНОГО ТИПА

от 16 000 до 25 000 ₽

Ещё одна разновидность подкатных домкратов. Конструкция позволяет им складываться наподобие ножниц (отсюда и название). Предназначены как для работы с низкорасположенным грузом, так и с большой высотой подъёма (до 700–800 мм). Причём может использоваться в два этапа: сперва груз отрывается от земли, а после с помощью подставки переставляется на пяту на корпусе насоса и поднимается до нужной высоты. Как правило, способны поднять с высоты зацепа в 70–80 мм вес в 4–7 т на уровень в три четверти метра. Стоят такие от 16 тыс. рублей за 4-тонный до 25 тыс. рублей за 7-тонный.

7. ДОМКРАТЫ-«КРОКОДИЛЫ»

от 10 000 до 30 000 ₽

По сути это подкатные домкраты, но большей мощности и с большей высотой подъёма опорной пяты. Такие нужны для профессиональной работы с коммерческими автомобилями, прицепами, сельскохозяйственной и спецтехникой. Грузоподъёмность в 10–20 т для них не является чем-то особенным, но при этом и весят они до 240 кг. Будучи профессиональным оборудованием, стоят «крокодилы» от 10 до 30 тыс. рублей и в гаражах автолюбителей встречаются редко.

Отдельным блоком мы разместили так называемые «джиперские домкраты». При том что каждый внедорожник вне зависимости от класса оснащён заводским домкратом, для езды по бездорожью ему обычно нужно более серьёзное оборудование. Самые популярные офф-роуд домкраты - реечные и надувные.

8. ЭЛЕКТРОГИДРАВЛИЧЕСКИЕ

от 10 000 до 14 000 ₽

Но самым интересным домкратом можно назвать электрогидравлический. Это сравнительно новый вид подъёмного устройства, в конструкции которого совмещены насос-гидромотор и домкрат бутылочного типа. Правильнее было бы назвать его электропневмогидравлическим, но получается очень уж длинно, поэтому название сокращают. Принцип работы подъёмного механизма прост - компрессор приводит в действие пневмоцилиндр, который давит на плунжер гидравлической системы. Высота подъёма - от 155 до 500 мм. Есть интересная комплектация с гайковёртом ударного типа, упрощающим, к примеру, замену колеса. Интересно было бы попробовать такой на бездорожье, но, поскольку информации о защищённости конструкции от влаги и пыли нет, можно делать это только на свой страх и риск. Довольно высокая стоимость, от 10 до 14 тыс. рублей, компенсируется тем, что вы получаете сразу два устройства - компрессор и домкрат.

9. НАДУВНЫЕ

от 3 000 до 5 000 ₽

Внутри домкратов, которые используют выхлопные газы или воздух автомобильного компрессора - пустота. Это большие мешки из прочной воздухонепроницаемой ткани со шлангом с системой клапанов и раструбом для присоединения к выхлопной трубе. В настоящее время их оснащают дополнительными секциями шланга со штуцером, позволяющим подсоединяться к автомобильному компрессору. Грузоподъёмность пневматических домкратов, как правило, 3–4–5 т. Отлично подходят для внедорожников, штурмующих бездорожье в заводской комплектации. При установке достаточно засунуть домкрат под днище, стараясь избегать горячих точек и острых выступающих деталей. Надувается он быстро, а спущенный укладывается в штатную сумку. Их стоимость невысока - от 3 до 5 тыс. рублей. По причине крайней неустойчивости они не приспособлены для ремонтных работ, зато отлично показали себя на слабых грунтах, в песке и глине. А вот для камней и буреломов потребуется жёсткая подложка.

10. РЕЕЧНЫЕ ДОМКРАТЫ

от 5 000 до 10 000 ₽

Самый известный вариант реечного домкрата представляет собой популярный фермерско-джиперский High Lift Jack и его многочисленные разновидности. В названии скрывается главная характеристика - длина рейки. Она может быть и 60, и 160 см. Грузоподъёмность наиболее популярных образцов примерно одинакова и составляет 3–4 т. Деталями, влияющими на выбор, могут стать размеры опорной платформы, высота подхвата, качество материала, из которого изготовлена рейка и детали подъёмного механизма. Определить это можно лишь косвенно по цене, марке и отзывам пользователей. Реечные домкраты потенциально наиболее травмоопасные и требуют определённых навыков, особенно в условиях бездорожья. Цена зависит от длины и производителя, средней считается 10 USD за 10 см рейки, то есть 5–10 тыс. рублей. К реечным домкратам продают комплекты дополнительного оборудования, например, платформу для мягких грунтов, крюки для захвата за колесо, упоры на рейку. Кроме того, реечный домкрат обладает уникальной способностью работать как мощная, хотя и довольно медленная лебёдка. Как правило, требует наличия в автомобиле специально подготовленных мест для установки крюка подхвата, которые представляют собой вырезы в силовых бамперах, наваренные площадки на порогах, или специального устройства для захвата за диск. И не забывайте про площадку для пяты - тонет хай-джек в мягком грунте великолепно.

НЕ СТОЙ ПОД ГРУЗОМ…

Нельзя оставить без внимания такой важный вопрос, как техника безопасности. Ни один производитель не рекомендует использовать при работе под машиной один лишь домкрат - обязательно нужны надёжные упоры. Ну а в случае с реечным домкратом требования безопасности настолько серьёзны, что мы не советуем использовать его, если у вас нет возможности пройти курс обучения у того, кто умеет это делать. Что касается рекомендаций, то мы бы советовали купить подкатной домкрат с подъёмной силой в 2–3 тонны для гаража и надувной для бездорожья. А если хочется всего и сразу, то электрогидравлический.

Текст Игорь Губарь
Фотографи ТД Сорокин

gastroguru © 2017