Расчет композитной лопасти несущего винта на прочность. К вопросу о выборе размеров и расположения отверстий узла крепления композитной лопасти несущего винта

Введение

Проектирование вертолета представляет собой сложный, развивающийся во времени процесс, разделяющийся на взаимосвязанные проектные стадии и этапы. Создаваемый летательный аппарат должен удовлетворять техническим требованиям и соответствовать технико-экономическим характеристикам, указанным в техническом задании на проектирование. Техническое задание содержит исходное описание вертолета и его летно-технические характеристики, обеспечивающие высокую экономическую эффективность и конкурентоспособность, проектируемой машины, а именно: грузоподъемность, скорость полета, дальность, статический и динамический потолок, ресурс, долговечность и стоимость.

Техническое задание уточняется на стадии предпроектных исследований, в ходе которых выполняются патентный поиск, анализ существующих технических решений, научно-исследовательские и опытно-конструкторские работы. Основной задачей пред проектных исследований является поиск и экспериментальная проверка новых принципов функционирования проектируемого объекта и его элементов.

На стадии эскизного проектирования выбирается аэродинамическая схема, формируется облик вертолета и выполняется расчет основных параметров, обеспечивающих достижение заданных летно-технических характеристик. К таким параметрам относятся: масса вертолета, мощность двигательной установки, размеры несущего и рулевого винтов, масса топлива, масса приборного и специального оборудования. Результаты расчетов используются при разработке компоновочной схемы вертолета и составлении центровочной ведомости для определения положения центра масс.

Конструирование отдельных агрегатов и узлов вертолета с учетом выбранных технических решений выполняется на стадии разработки технического проекта. При этом параметры спроектированных агрегатов должны удовлетворять значениям, соответствующим эскизному проекту. Часть параметров может быть уточнена с целью оптимизации конструкции. При техническом проектировании выполняется аэродинамические прочностные и кинематические расчеты узлов, выбор конструкционных материалов и конструктивных схем.

На стадии рабочего проекта выполняется оформление рабочих и сборочных чертежей вертолета, спецификаций, комплектовочных ведомостей и другой технической документации в соответствии с принятыми стандартами

В данной работе представлена методика расчета параметров вертолета на стадии эскизного проектирования, которая используется для выполнения курсового проекта по дисциплине "Проектирование вертолетов".


1. Расчет взлетной массы вертолета первого приближения

- масса полезного груза, кг; -масса экипажа, кг. -дальность полета кг.

2. Расчет параметров несущего винта вертолета

2.1Радиус R , м, несущего винта вертолёта одновинтовой схемы рассчитывается по формуле:

, - взлетная масса вертолета, кг;

g - ускорение свободного падения, равное 9.81 м/с 2 ;

p - удельная нагрузка на площадь, ометаемую несущим винтом,

p =3,14.

Значение удельной нагрузки p на ометаемую винтом площадь выбирается по рекомендациям, представленным в работе /1/: где p = 280

м.

Принимаем радиус несущего винта равным R = 7.9

Угловая скорость w , с -1 , вращения несущего винта ограничена величиной окружной скорости w R концов лопастей, которая зависит от взлетной массы

вертолета и составили w R = 232 м/с. с -1 . об/мин.

2.2 Относительные плотности воздуха на статическом и динамическом потолках

2.3 Расчет экономической скорости у земли и на динамическом потолке

Определяется относительная площадь

эквивалентной вредной пластинки: , где S э = 2.5

Рассчитывается значение экономической скорости у землиV з , км/час:

,

где I

км/час.

Рассчитывается значение экономической скорости на динамическом потолкеV дин , км/час:

,

где I = 1,09…1,10- коэффициент индукции.

км/час.

2.4Рассчитываются относительные значения максимальной и экономической на динамическом потолкескоростей горизонтального полета:

, ,

где V max =250 км/час и V дин =182.298 км/час - скорости полета;

w R =232 м/с - окружная скорость лопастей.

2.5Расчет допускаемых отношений коэффицента тяги к заполнению несущего винта для максимальной скорости у земли и для экономической скорости на динамическом потолке:

припри

2.6 Коэффициенты тяги несущего винта у земли и на динамическом потолке:

, , , .

2.7 Расчет заполнения несущего винта:

Заполнение несущего винта s рассчитывается для случаев полета на максимальной и экономической скоростях:

; .

В качестве расчетной величины заполнения s несущего винта принимается наибольшее значение из s Vmax и s V дин .

В статье рассмотрен один из вопросов рационального проектирования композитных лопастей несущего винта вертолета. Обычно расположение и соотношение размеров отверстий для болтов узла крепления в комле лонжерона лопасти несущего винта выбираются исходя из конструктивных и технологических соображений. При этом, разумеется, учитываются требования прочности и усталостного ресурса. Однако, как правило, отдается предпочтение наиболее простому с технологической точки зрения решению. Между тем особенностями напряженного состояния именно в этой области в значительной мере определяются прочностные и усталостные свойства лопасти в целом. Это подтверждается как результатами стендовых испытаний, так и опытом эксплуатации изделий в полетных условиях. Здесь для определения оптимальных размеров и расположения отверстий узла крепления комлевой части лопасти несущего винта выполнена серия конечно-элементных расчетов. В конечно-элементной модели учитывается нелинейный характер контактного взаимодействия между болтами узла крепления и композитного материала лопасти несущего винта. Для оценки уровня напряженно-деформированного состояния многослойного композитного материала используется критерий Хилла. При этом возникла необходимость в предварительной оценке пределов прочности для многослойного пакета произвольного состава по известным характеристиками монослоев. Для построения расчетной модели разработан алгоритм построения диаграмм деформирования многослойного композитного материала. Данные диаграммы использованы для определения жесткостных характеристик многослойного пакета и предельных погонных усилий для данного пакета. Выполнены расчеты по оценке напряженного состояния композитного материала в области узлов крепления при заданных условиях нагружения. Рассмотрены 45 вариантов расположения отверстий и соотношения их размеров. На основании результатов расчетов сделан вывод о том, что актуальный вариант конструктивного решения не является оптимальным.

Для выполнения боевого задания и обеспечения безопасности полетов конструкция вертолета должна быть достаточно прочной и жесткой. Под прочностью имеют ввиду способность конструкции воспринимать, не разрушаясь, заданные внешние нагрузки, встречающиеся в процессе эксплуатации. Под жесткостью понимают способность конструкции сопротивляться деформированию под нагрузкой.

В процессе эксплуатации вертолет подвергается различным па характеру и величине нагрузкам: статическим (постоянным или медленно меняющимся по времени), динамическим (ударным и вибрационным). В зависимости от вида нагружения конструкция или отдельная ее часть должна обладать соответствующим видом прочности.

Сочетание необходимых значений различных видов прочности, обеспечивающее нормальную работу конструкции в пределах установленных ограничений и сроков, называют эксплуатационной прочностью.

В процессе эксплуатации прочность конструкции не остается неизменной. Большие нагрузки, близкие к предельным, могут вызывать остаточные деформации в ее элементах. Небольшие, но многократно повторяющиеся нагрузки вызывают развитие усталостных трещин, ослабляющих конструкцию. Происходят износ

трущихся деталей, абразивный износ лопастей НВ, лопаток газотурбинных двигателей под действием пыли, песка. Кроме того, при техническом обслуживании вносятся повреждения в виде вмятин, царапин, рисок, забоин и т. д. Все это приводит к постепенному снижению прочности конструкции и вынуждает ограничивать ресурс (налет в часах) вертолета.

В процессе эксплуатации на конструкцию постоянно действуют перепады температур, атмосферные осадки, пыль, солнечная радиация и т. д. Воздействие этих факторов вызывает коррозию элементов конструкции, растрескивание остекления и других неметаллических деталей, повреждение защитных покрытий. В результате приходится ограничивать календарное время эксплуатации техники (срок службы).

Таким образом, все указанные выше внешние факторы, снижающие прочность и ухудшающие эксплуатационные качества конструкции, ограничивают ее долговечность. Долговечностью летательного аппарата называют свойство сохранять работоспособность с учетом обслуживания и ремонта до некоторого предельного состояния, при котором нарушаются требования безопасности полетов, снижается эффективность эксплуатации. Показателями долговечности служат ресурс и срок службы.

Одной из основных задач технической эксплуатации авиационной техники является поддержание необходимой прочности в течение всего срока службы в условиях реальной эксплуатации.

Общие принципы расчета вертолета на прочность

В Нормах прочности предусматривается также: действие отрицательной перегрузки = -0,5 при вводе в планирование, энергичные развороты вертолета на висении, воздействие вертикальных и боковых порывов воздуха и др. Каждый из расчетных случаев является определяющим для прочности той или иной части или агрегата вертолета.

Посадочные расчетные случаи рассматривают различные варианты посадки: на все опоры, только на основные, посадка с боковым ударом и т. д.

Наземные расчетные случаи рассматривают воздействие ветра, буксировку вертолета по неподготовленной площадке и др.

Особая сложность расчета вертолета на прочность состоит в том, что основные его нагрузки, например, силы от лопастей НВ, имеют переменный по величине и направлению характер, что вызывает колебания самих лопастей и конструкции вертолета в целом. Такое нагружение называется динамическим. При длительном действии многократно повторяющихся нагрузок разрушение конструкции происходит при напряжениях, значительно меньших, чем при постоянной, статической нагрузке. Это объясняется явлением усталости материала.

В Нормах прочности приводятся также все необходимые данные для расчета жесткости конструкции, ее динамической прочности и ресурса (срока службы).

Понятие о расчете статической прочности

Если нагрузка конструкции постоянна или изменяется медленно, то деформации и напряжения в ней будут также постоянны или изменяться постепенно, пропорционально нагрузке, без колебательных процессов. Такое нагружение называется статическим.

Для вертолета статическими нагрузками можно считать: тягу несущего и рулевого винтов; центробежные силы лопастей; аэродинамические силы крыла и оперения.

Расчет на статическую прочность включает:

  • - определение в соответствии с Нормами прочности величины и характера распределения расчетных нагрузок;
  • - построение эпюр поперечной Q и продольной N сил, изгибающего и крутящего моментов для рассматриваемой части конструкции вертолета;
  • - выявление наиболее нагруженных участков конструкции, в которых возможны наибольшие напряжения;
  • - определение напряжений в элементах конструкции и сравнение их с разрушающими.

Статическая прочность конструкции обеспечивается, если напряжения в ее элементах не превышают разрушающих значений.

Однако обеспечение статической прочности еще не гарантирует безопасной эксплуатации вертолета, поскольку под действием переменных нагрузок в его конструкции возникают соответствующие переменные напряжения. Эти напряжения, накладываясь на постоянные, увеличивают суммарные напряжения, а также могут привести к усталостному разрушению конструкции.

Источники переменных нагрузок вертолета

Основные нагрузки вертолета носят переменный характер, они постоянно изменяются по величине и направлению с определенными частотами.

Основными источниками переменных нагрузок являются несущий и рулевой винты. Причиной периодического изменения сил, действующих на лопасти НВ, является непрерывное изменение скорости и направления набегающего на них потока в различных азимутах и в различных сечениях при поступательном полете вертолета. Когда лопасть при своем вращении движется навстречу набегающему на вертолет потоку, суммарная скорость ее обтекания увеличивается, а при движении назад, напротив, уменьшается. Поскольку аэродинамические силы пропорциональны квадрату скорости обтекания, подъемная сила Ул и лобовое сопротивление Хл лопасти также постоянно изменяются. Это вызывает маховое движение лопастей в вертикальной плоскости и колебания в плоскости вращения.

При маховом движении центры масс лопастей периодически приближаются и удаляются от оси винта, что вызывает появление переменных кориолисовых сил, действующих в плоскости вращения. Эти силы также вызывают колебания лопастей в плоскости вращения.

Все эти переменные силы передаются на втулку НВ и далее через вал винта и редуктор на фюзеляж вертолета, вызывая его колебания в вертикальной и горизонтальной плоскостях. Амплитуды переменных сил, передаваемых с лопастей, могут составлять тысячи ньютон, а для тяжелых вертолетов - десятки тысяч. Частоты этих сил кратны произведению частоты вращения винта на число лопастей.

Дополнительными источниками переменных сил могут явиться плохая балансировка и несоконусность лопастей. Плохая балансировка заключается в неодинаковых статических моментах лопастей, что вызывает неуравновешенность их центробежных сил. Несоконусность проявляется в различных амплитудах махового движения лопастей вследствие отличий их внешних форм, жесткости на кручение или неточной регулировки установочных углов. По тем же причинам возникают переменные силы рулевого винта.

Об усталостной прочности лопасти несущего винта вертолета при действии ветровых нагрузок

А.И. Братухина

Статья посвящена рассмотрению вопроса о напряжениях в невращающейся лопасти и втулке несущего винта вертолета под действием ветровых нагрузок. Сделано допущение, что вертолет находится на стоянке и его винт не вращается. Расчет проводился для несущего винта с шарнирным креплением лопастей. Решена задача о собственных и вынужденных колебаниях лопасти вертолета. Определены деформации и внутренние усилия (изгибающие моменты и напряжения в лонжероне лопасти). Проведен анализ результатов и оценено влияние швартовки лопасти в наземных условиях эксплуатации.

В данной работе рассмотрены случаи нагружения элементов конструкции лопасти и втулки в наземных условиях. Потребность в подобных расчетах всегда существует, в связи с постоянно встречающимися в эксплуатации повреждениями винтов при работе вертолета на земле.

Необходимость рассматривать наземные случаи нагружения вертолета подтверждена в "Нормах летной годности гражданских вертолетов", а также требованиями по сертификации, предъявляемыми за рубежом.

Рассматривается задача определения деформаций и внутренних усилий (изгибающих моментов и напряжений) в лонжероне лопасти несущего винта вертолета под действием ветровых нагрузок. Предполагается, что вертолет находится на стоянке и его винт не вращается. В некоторый момент времени на лопасть действует порыв ветра. Под действием порыва ветра на лопасти возникает аэродинамическая подъемная сила, которая в зависимости от направления ее действия, поднимает лопасть вверх или прижимает вниз. В результате этого лопасть совершает вынужденные колебания в вертикальной плоскости, а лонжерон нагружается изгибающим моментом, действующим в основном в плоскости наименьшей жесткости.

Расчет проводился для несущего винта с шарнирным креплением лопастей.

Движение лопасти относительно горизонтального шарнира происходит свободно до некоторого положения, характеризуемого углом ограничителя свеса (рис. 1а). После этого перемещение лопасти может происходить только за счет ее упругих деформаций. Таким образом, если колеблющаяся под действием внешней нагрузки лопасть находится выше линии OR, то ее движение описывается расчетной схемой, показанной на рис. 1б. После того, как точка А комля лопасти достигла упора ограничителя свеса, ее дальнейшее движение должно быть описано схемой, изображенной на рис. 1в. Для зашвартованной лопасти расчетная схема соответствует рис. 1г.

Малые колебания лопасти невращающегося несущего винта вертолета описываются дифференциальным уравнением в частных производных :

. (1)

В уравнении: - перемещение сечения лопасти в плоскости наименьшей жесткости; - изгибная жесткость сечения лопасти относительно главной оси, лежащей в плоскости хорд; - внешняя распределенная нагрузка:

, (2)

Погонная масса лопасти;

Ускорение силы тяжести.

После подстановки (2) в (1) получим

(3)

Решение уравнения (3) представим в виде разложения в ряд по собственным формам колебаний :

, (4)

где - число собственных форм, принимаемых в расчете;

Форма - ого тона собственных колебаний лопасти в пустоте, которая является функцией ее радиуса;

Некоторые функции времени (коэффициенты деформаций).

Собственные формы определяются из дифференциального уравнения (3), когда его правая часть равна нулю:

(5)

После определения частот и форм собственных колебаний в решении (4), неизвестными останутся только коэффициенты деформаций . Применяя метод Б.Г. Галеркина к системе дифференциальных уравнений изгибных колебаний лопасти, записанных в частных производных (3), после двукратного дифференцирования, получим:

, (6)

. (7)

Подставим (4), (6) и (7) в уравнение (3), а затем умножим его поочередно на и проинтегрируем по радиусу лопасти. В силу ортогональности собственных форм получим систему обыкновенных дифференциальных уравнений, связанных между собой только через аэродинамическую нагрузку:

(8)

;

Частота собственных колебаний лопасти по j-ому тону,

.

Расчет аэродинамических сил, входящих в правую часть уравнения (8), выполняется в зависимости от аэродинамических коэффициентов подъемной силы и силы сопротивления от угла атаки профиля лопасти и числа Маха, полученных по результатам продувок в аэродинамических трубах. Вычисление коэффициентов деформации лопастей выполняется методом численного интегрирования уравнения (8).

Под действием ветровой нагрузки лопасть вертолета, находящегося на стоянке, начинает движение в вертикальной плоскости. В зависимости от того, находится ли лопасть на ограничителе свеса или отошла от него, в решении (4) используются шарнирные или консольные формы колебаний. Коэффициенты деформации, определяемые из системы дифференциальных уравнений (8), также будут соответствовать шарнирным или консольным формам. При колебательном движении лопасти в момент изменения консольных форм на шарнирные и наоборот должно соблюдаться условие сопряжения решений. Это может быть получено путем обеспечения равенства перемещений и скоростей движения лопасти в момент смены форм. Обозначим перемещения и скорости для шарнирно опертой лопасти через

(9)

(10)

а для консольного закрепления

, (11)

. (12)

Приравнивая выражения (9), (11) для перемещений и (10), (12) для скоростей движения и учитывая угол , получим после некоторых преобразований начальные условия для коэффициентов деформации и их производных в момент времени, когда лопасть поднимается с ограничителя свеса:

(13)

ВВЕДЕНИЕ

Вертолетостроение традиционно было лидирующим в применении композитов. В последнее время доля их использования в конструкции вертолета существенно возросла. Использование композитов предъявляет дополнительные требования к содержанию знаний конструктора. Сложность конструирования деталей, выполняемых из композитов, обусловлена тем, что деталь и материал изготавливаются одновременно. Поэтому наряду с выбором внешней формы, оптимальной с точки зрения изготовления детали, конструктор должен определить структуру композита, которая была бы оптимальна для выбранной формы детали и наилучшим образом соответствовала действию внешних нагрузок. Для успешного решения этой задачи конструктор должен знать свойства композитов, методы их расчета и способы изготовления из них конструкций .

С первого взгляда, для получения наилучшей конструкции достаточно составить математическую модель проектируемого объекта и найти его оптимальные параметры по одному или нескольким заранее выбранным критериям эффективности. Однако есть принципиальные трудности, которые не позволяют решить эту задачу достаточно корректно. Во-первых, определение оптимальных параметров конструкции возможно лишь для заданной конструктивно-силовой схемы, при этом остается нерешенным вопрос об оптимальности самой схемы. Во-вторых, не всегда удается формализовать все ограничения и требования к конструкции при построении математической модели. Выбор и определение комплексного критерия оптимизации также является достаточно сложной и неоднозначной в своем решении задачей. Поэтому упомянутые вопросы конструирования обычно решаются последовательно, в порядке определенного соподчинения .

Значительный прогресс в совершенствовании процесса проектирования достигается при переходе на CAD/CAM/CAE технологии. Имеющийся в них широкий набор инструментов автоматизации конструкторских работ позволяет не только сократить сроки проектирования и выпуска изделия, но и повысить качество конструкции по многим показателям .

Целью данного дипломного проекта является:

– оптимизация конструкции лонжерона лопасти несущего винта вертолета. Подбор оптимальной конструкции будет осуществляться с использованием персонального компьютера и прикладной программы Solid Works;

– оценка возможности использования прикладной программы Solid Works как инструмента системы автоматизированного проектирования (САПР) конструкций из КМ.

НЕСУЩИЙ ВИНТ ВЕРТОЛЕТА

Общие требования к конструкциям элементов несущего винта

Общие требования, предъявляемые к конструкции элементов НВ, противоречивы и проектирование несущей системы вертолета является сложной задачей нахождения компромисса между ними. Требования можно подразделить на следующие группы.

Аэродинамические требования. Взаимное расположение частей НВ, его формы и параметры должны обеспечивать высокие летно-технические характеристики. Конструкция лопастей должна обеспечивать заданные характеристики аэродинамического контура и балансировку в пределах, которые позволяют эксплуатировать вертолет с учетом установленных ограничений, ресурсов и сроков службы .

Требования прочности. Все элементы конструкции вертолета должны выдерживать все виды нагрузок в соответствии с нормами летной годности вертолетов, в которых предусмотрены различные случаи нагружения частей вертолета .

По видам нагрузок элементы несущего винта должны проектироваться с учетом статической, усталостной прочностей и их совокупности. Также, ввиду того, что лопасть НВ является длинномерной конструкцией, необходим учет прочности по устойчивости конструкции.

Статическая прочность конструкции проверяется при больших редко действующих нагрузках. При этом расчет и выбор параметров конструкции проводится по разрушающей нагрузке Рразр. которая должна превосходить эксплуатационную Рэ в некоторое число раз. Это число называют коэффициентом безопасности f . Для авиационных конструкций f принято выбирать равным 1,5. Чрезмерное увеличение значения этого коэффициента ведет к возрастанию габаритов и массы, что является недопустимым для конструкции летательного аппарата. Для каждого агрегата вертолета и конкретного случая его нагружения рекомендуемые значения коэффициентов безопасности даются в "Авиационных правилах". Начальным этапом определения размеров детали является проектировочный расчет по допускаемым напряжениям. Размеры сечений детали рассчитываются таким образом, чтобы действующие в них напряжения от расчетной нагрузки ур, были равны допускаемым напряжениям [у], [ф]. В качестве допускаемых напряжений принимаются пределы прочности у в, ф в или текучести у т в зависимости от характера и условий нагружения конструкции. Определенные трудности возникают при выборе допускаемых напряжений в деталях, изготавливаемых из композиционных материалов, вследствие особенностей характера их разрушения. На рисунке 1.1 представлена диаграмма изменений напряжений в зависимости от удлинения образца однонаправленного стеклопластика при приложении нагрузки вдоль армирующих волокон .

В начале нагружения до некоторого момента материал сохраняет целостность и ведет себя как упругий, подчиняясь закону Гука: у = Е·е. После достижения напряжений, соответствующих точке 1 (рисунок 1.1), в связующем на разделе сред появляются мелкие трещины. Армирующие элементы здесь не разрушаются, и конструкция не теряет несущих свойств. Более того, для некоторых материалов наблюдается увеличение жесткости. На второй стадии (рисунок 1.1, точка 2) вдоль армирующих элементов появляются значительные трещины, но волокна не повреждаются. Конструкция еще сохраняет несущие свойства. На третьей стадии (рисунок 1.1, точка В) армирующие нити рвутся, и материал полностью разрушается. Если допускаемые напряжения при действии максимальных эксплуатационных нагрузок выбирать соответствующими последней стадии разрушения (ув), то может оказаться, что при действии номинальных нагрузок материал будет находиться в первой или второй стадиях разрушения. Это недопустимо, поскольку при повторных нагрузках трещины в конструкции будут расти, ускоряя ее разрушение. Поэтому прочность деталей из композиционных материалов следует оценивать как при максимальных, так и при номинальных нагрузках эксплуатации. Это противоречие в ряде случаев преодолевается выбором большого значения коэффициента безопасности f = 2,0-2,5 и занижением допускаемых напряжений в композите до уровня 2/3ув при расчете конструкции на предельную несущую способность.

Рисунок 1.1 - Диаграмма изменений напряжений у в зависимости от удлинения образца е однонаправленного стеклопластика, где у1 и е1 - напряжение и деформации согласно закону Гука; у2 - напряжение появления значительных трещин без повреждения волокон; ув - напряжение разрушения образца; 1 - точка предела пропорциональности; 2 - точка; характеризующая начало накопления трещин; В - разрушение композита

При расчете лонжерона по условиям статической прочности (для случая падения лопасти на ограничитель свеса) ставится условие, чтобы расчетные напряжения в слое не превышали у1. Это делается с целью недопущения микротрещин даже при статическом, кратковременном нагружении. В дальнейшем они могут привести к снижению усталостной прочности при действии циклических нагрузок. При таком подходе лопасть несущего винта приобретает большой ресурс, ограниченный не столько усталостными характеристиками исходного материала, сколько другими факторами, например временем его естественного старения .

Расчет конструкции, работающей на устойчивость, производится по разрушающим нагрузкам и сводится к определению критической силы потери устойчивости Ркр, которая должна быть не меньше расчетной Рр.

Усталостные разрушения составляют основной вид разрушения механических агрегатов вертолета и нередко приводят к тяжелым последствиям. На усталостные характеристики композиционных материалов оказывает влияние множество факторов. Среди основных: состав и структура материала, температура, влажность окружающей среды, вид нагружения. Поэтому для каждого образца материала, который предполагается использовать в конструкции, необходимо проводить полный цикл усталостных испытаний. Усталостную прочность композитов, как и у металлов, оценивается кривыми усталости. Между усталостными и статическими характеристиками композита существует прямая зависимость. Чем выше статическая прочность материала, тем лучше он сопротивляется усталости .

Практика использования композитов в конструкциях показала, что срок их службы в условиях действия переменных многоцикловых нагрузок значительно превышает срок службы аналогичных конструкций, выполненных из металлов. В частности, ресурс лопасти, выполненной из полимерных композитов, ограничен не столько возможностью усталостного разрушения, сколько изменением в течение длительной эксплуатации и хранения физико-механических свойств деталей лопасти и их клеевых соединений вследствие старения и охрупчивания .

Требования жесткости. Ввиду подверженности лопасти НВ знакопеременным нагрузкам, а также случаям значительного статического нагружения, конструкция лопасти должна обладать необходимой жесткостью для предотвращения остаточных деформаций и соблюдения заданного аэродинамического профиля поверхности лопасти. Следствием низкой изгибной и крутильной жесткости может стать потеря эффективности управления вертолетом, когда из-за изгиба и закручивания аэродинамической поверхности, находящейся под воздействием внешних сил, появляются неконтролируемые изменения углов установки и, соответственно, углов атаки по длине лопасти. Недостаточная изгибная и крутильная жесткость может стать причиной недопустимых явлений аэроупругости, таких, как флаттер и дивергенция .

Требование надежности. Основным требованием к вертолету и его конструкциям является надежность - способность выполнять свои функции с сохранением летных и эксплуатационных показателей в заданных пределах в течение заданного промежутка времени . Конструкция элементов НВ вертолета, значения их прочности, жесткости, массы, ресурса должны обеспечивать надежность эксплуатации при заданных условиях работы и случаях внештатных нагрузок.

Технологичность конструкции. Конструкция элементов НВ вертолета должна обеспечивать возможность применения прогрессивных и экономичных технологических процессов .

Совершенство по массе. Для авиационных конструкций требование минимальной массы является обязательным, разумеется, при соблюдении прочности и жесткости. Поскольку лопасть НВ и ее составные элементы (лонжерон, узлы крепления) относятся к силовым элементам, то основным путем уменьшения массы служит выбор рациональной конструктивно-силовой схемы, применение конструкционных материалов с высокими характеристиками относительной прочности и относительной жесткости . Однако масса лопасти должна обеспечивать необходимые инерционные характеристики для безопасного полета в режиме авторотации несущего винта, а также соответствовать значениям, необходимым для устранения аэроупругих явлений (флаттера, дивергенции) .

Оптимальная масса конструкции может быть достигнута грамотным конструированием.

Долговечность конструкции. Долговечность - это общее время (обычно исчисляемое в годах) работы конструкции на номинальном режиме в условиях нормальной эксплуатации без существенного снижения расчетных параметров при экономически приемлемой суммарной стоимости ремонтов. Долговечность агрегатов вертолетов, особенно имеющих силовые детали и узлы, во многом определяется величиной их ресурса.

Ресурсом называется наработка агрегата (исчисляемая в часах) от начала эксплуатации до наступления предельного состояния, после которого существует вероятность его разрушения . Для большинства основных агрегатов вертолета (лопастей и втулок несущих и рулевых винтов, систем управления винтами, трансмиссии, редукторов, подредукторной рамы и др.) устанавливается ресурс по условиям усталостной прочности .

Существует два способа проектирования авиационных конструкций по выносливости в условиях действия переменных нагрузок: проектирование по принципам "безопасного ресурса" и "безопасного повреждения".

При назначении безопасного ресурса предполагается, что в процессе отработки задаваемого срока службы ни в одной из деталей рассматриваемой серии не будут возникать усталостные трещины .

В конструкции с безопасным повреждением допускается появление трещин в отдельных силовых элементах конструкции, однако, трещины не должны приводить к разрушению или чрезмерной деформации всей конструкции. Это достигается выбором типа конструкции, при котором возможное разрушение или усталостные трещины только уменьшат до некоторой степени статическую прочность и жесткость конструкции, достаточные для завершения безаварийного полета вертолета. Увеличение допускаемых напряжений в элементах конструкции с безопасным повреждением может составлять 15-20 % по сравнению с соответствующими напряжениями, принимаемыми для конструкции безопасного срока службы. Выигрыш от применения безопасно повреждаемых конструкций заключается в уменьшении массы изделия, увеличении срока службы и уменьшения его стоимости .

Эффективным способом обеспечения безопасной повреждаемости является использование "избыточных" конструкций с несколькими каналами передачи нагрузок. Примером такого решения является лопасть несущего винта с многоконтурным лонжероном, показанная на рисунке 1.2.


Рисунок 1.2 - Отсек лопасти с многоконтурным лонжероном

При использовании в конструкции НВ композиционных материалов часто используется проектирование по принципу безопасного повреждения.

gastroguru © 2017