Опреснение морской воды в промышленных, домашних и походных условиях. Рынок технологий опреснения морской воды Опресненная вода



Использование морской воды для полива

Полив почвы во многих засушливых районах связан с недостатком пресной воды из-за отсутствия поблизости естественных пресноводных водоемов. Достаточно сказать, что около 60 % земной поверхности относится к районам, где пресной воды очень мало или ее нет совсем. Зачастую, проблему можно было бы решить, если бы появилась возможность использовать для полива почвы (и для других хозяйственных целей) опресненной морской воды.
Запасы морской воды на Земле поистине неисчерпаемы, но эту воду невозможно использовать для хозяйственных целей из-за высокого содержания солей.

Вода, используемая для полива сельскохозяйственных культур, должна содержать очень мало солей - большинство культур не произрастает, если их поливают водой, содержащей более 0,25% солей. Очень болезненно реагируют растения и на содержание в воде щелочи.
Во многих странах, в том числе и в России изыскиваются пути опреснения морских вод, что сняло бы проблему засухи и недостатка пресной воды в районах, примыкающих к морским солоноводным водоемам.

Нехватка пресной воды все больше ощущается в индустриально развитых странах, как США и Япония, где потребность в пресной воде для бытовых нужд, сельского хозяйства и промышленности превышает имеющиеся запасы.
В таких странах, как Израиль или Кувейт, где уровень осадков очень низок, запасы пресной воды не соответствуют потребностям в ней, которые возрастают в связи с модернизацией хозяйства и приростом населения. В дальнейшем человечество окажется перед необходимостью рассматривать океаны как альтернативный источник воды.

Россия по ресурсам наземных пресных вод занимает первое место в мире. Один только Байкал способен удовлетворить нынешнюю потребность россиян в пресной воде. Достаточно привести такой пример: если попытаться заполнить байкальскую котловину, направив сюда воду всех рек земного шара, то на ее заполнение потребуется почти 300 дней.
Однако до 80% этих ресурсов приходится на малозаселенные и малоосвоенные районы Сибири, Севера и Дальнего Востока. Всего около 20% пресноводных водоемов расположено в центральных и южных областях с высокой плотностью населения, высокоразвитыми промышленностью и сельским хозяйством.
Некоторые районы Средней Азии (Туркмения, Казахстан), Кавказа, Донбасса, юго-восточной части РФ, обладая крупнейшими минерально-сырьевыми ресурсами, не имеют источников пресной воды.

Вместе с тем ряд районов нашей страны располагает большими запасами подземных вод с общей минерализацией от 1 до 35 г/л, не используемых для нужд водоснабжения из-за высокого содержания растворенных в воде солей. Эти воды могут стать источниками водоснабжения только при условии их дальнейшего опреснения.

Важным параметром морской воды при опреснении является ее солёность, под которой подразумевается масса (в граммах) сухих солей (преимущественно NaCl ) в 1 кг морской воды. В разных морях содержание солей в единице объема воды может сильно колебаться (так, например, Черное, Каспийское и Азовское моря считаются слабосолеными). Средняя солёность вод Мирового океана составляет 35 г/кг морской воды.

Наряду с поваренной солью (NaCl) в морской воде содержатся и другие химические элементы, преимущественно, в виде ионов: K+, Mg 2 +, Ca 2 +, Sr 2 +, Br-, F-, H 3 BO 3 , которые можно получать из морской воды в промышленных масштабах. Среди других веществ, содержащихся в морской воде - литий (Li) , рубидий (Rb) , фосфор (P) , йод (J) , железо (Fe) , цинк (Zn) и молибден (Mo) . Всего в морской воде обнаружено около 50 химических элементов в тех или иных концентрациях.



Способы опреснения морской воды

Наиболее известный (с глубокой древности) метод опреснения соленой воды - дистилляция, когда соленая вода испаряется в специальной установке, а затем из пара отбирают конденсат в виде пресной воды. Соли остаются в начальном растворе (тузлуке), который постоянно пополняется свежей морской водой.

Процесс достаточно трудоемкий и энергоемкий, поэтому лучшие умы человечества задействованы на удешевлении технологии получения пресной воды из морской.
Применяются вакуумные установки, позволяющие испарять воду при более низких температурах, а также технология вымораживания соли, когда охлажденная морская вода превращается в кубики пресноводного льда, покрытого кристаллами соли. Эти кристаллы затем смываются пресной водой и получается пресный лед.

Кроме указанных технологий известен способ отделения соли из воды при помощи ионных процессов. Известно, что растворенные в воде соли образуют ионы, имеющие отрицательный или положительный заряд. Благодаря этому явлению появляется возможность выделить ионы соли из воды при помощи электрических (электродиализ) или химических (ионообмен) процессов. Подобные установки уже применяются на практике, хотя технология еще далека до совершенства, и стоимость полученной пресной воды достаточно высока.

Применяются и другие методы опреснения морской воды - экстракция, основанная на том, что в некоторых органических жидкостях при низкой температуре растворяется больше воды, чем при высокой. Холодный экстрагент смешивается с соленой водой и "высасывает" из нее пресную воду, без солей. Пройдя через нагреватель, экстрагент "отпускает" из себя пресную воду.

Кроме перечисленных способов получения пресной воды применяют следующие малоизвестные методы: осмос , ультрафильтрацию, образование и последующее разложение гидратов, а также комбинацию перечисленных технологий.

Практическое применение технологий по добыче пресной воды из соленой в достаточно больших объемах осуществляется с первой половины прошлого века. Опресняющие установки производительностью до нескольких тысяч кубометров в сутки имеются во многих странах, в том числе и в бывшей республике СССР - Азербайджане. Здесь при помощи опреснительных технологий произведена попытка снизить проблему с водоснабжением города Баку.

Проблема с пресным водоснабжением возникла и в Крыму после известных событий, связанных с его присоединением к России в 2014 году. Украина (с целью наказания непокорных) перекрыла канал, подающий на полуостров пресную воду, тем самым создав дефицит, как технической, так и питьевой воды для населения.
Появились сведения о постройке на полуострове (в г. Керчь) установки для опреснения морской воды производительностью около 50 т/час. Полученная вода будет использоваться, преимущественно, для технических нужд (подпитки теплосетей и паровых котлов), что, в свою очередь, позволит значительно снизить нагрузку на общее водоснабжение.

Морская вода на этой установке будет проходить несколько этапов опреснения по комбинированной технологии. Так, для осветления предлагается использовать мембранную технологию ультрафильтрации, для опреснения - мембранную технологию обратного осмоса, для полировочного умягчения - ионообменную технологию.
Установка будет функционировать в автоматическом режиме, для контроля работы оборудования понадобится всего один оператор.

Современные технологии не позволяют в настоящее время получить качественную и дешевую пресную воду из морской воды, поэтому рентабельность возделывания культур на землях, полив которых осуществляется опресненной морской водой пока стоит под вопросом.
Тем не менее, научные работы в этом направлении постоянной ведутся во всем мире, в том числе и в нашей стране, поскольку нехватка пресной воды на планете с каждым годом становится все ощутимее.
Большие перспективы возлагаются на использование атомной энергии для отделения соли из морской воды, что позволит значительно удешевить опреснительные технологии.

Опреснитель, - это аппарат для удаления из воды растворенных солей.

С помощью опреснителя в результате конечной обработки получается сверхчистая вода, не содержащая минеральных солей, которая может использоваться как для бытовых целей, так и в качестве питьевой воды.

Вода, в том числе и пресная, не является абсолютно чистой: она содержит различные примеси. От количества и свойств, растворенных в воде веществ, зависит пригодность ее применения на судне.

В зависимости от назначения различают следующие виды пресной воды, применяемые на судне:

  • питьевую - для питья и приготовления пищи;
  • мытьевую - для умывальников, душевых, прачечных;
  • питательную - для питания парогенераторов;
  • дистиллированную - для аккумуляторных батарей;
  • техническую - для охлаждения судовых двигателей;
  • технологическую - для обработки рыбы.

Для каждого из перечисленных видов воды предусматриваются свои емкости и системы.
Допускается устройство единой системы питьевой и мытьевой воды при условии, что качество и условия ее хранения будут удовлетворять требованиям, предъявляемым к питьевой воде.

Типы опреснителей.

Существующие разнообразные способы опреснения забортной морской воды можно разделить на две основные группы:

  1. Дистилляционное опреснение, связанное с промежуточным переходом жидкого агрегатного состояния, в твердое или газообразное (паровое или испарительное);
  2. Фильтрационное опреснение (обратный ОСМОС) без изменения агрегатного состояния жидкости (воды).

Дистилляционные опреснители выпаривают морскую воду, улавливают получившийся пар и затем, после его охлаждения, получают воду.

Дистилляционная опреснительная установка состоит из следующих основных частей:

  • Теплообменных аппаратов: испарителя, конденсатора, водонагревателя.
  • Насосов: питательного, циркуляционного, дистиллятного, рассольного.
  • Трубопроводов: теплоносителя, забортной воды, пресной воды, рассола.
  • Контрольно-измерительных, сигнальных и автоматических приборов.

Опреснители фильтрационного типа работают по-другому. В работе используют принцип обратного ОСМОСа. Под ОСМОСом понимают процесс «выравнивания» концентрации растворенных элементов в растворах (например, солей в сосудах, разделенных полупроницаемой мембраной). Обратный ОСМОСтребует приложения к соленой воде очень высокого давления, которое буквально «выдавливает» ионы соли через мембрану. Проще говоря, опреснение состоит в том, что солевой раствор оказывается под давлением со стороны мембраны, проницаемой для воды и непроницаемой для соли.

В результате фильтрации способом обратного ОСМОСа 97% содержащихся в морской воде солей и минералов отфильтровываются, а оставшиеся 3% дают на выходе чистую питьевую воду, согласно всех санитарных требований.

Преимущества и недостатки опреснителей дистилляционного и фильтрационного типов.

Преимущества дистилляционного типа опреснителей:

  • возможность достижения высокого качества опресненной воды.
  • возможность использования в системах водоподготовки на тепловых и атомных электростанциях, а также котельных установках.

Преимуществами опреснителей фильтрационного типа (обратный ОСМОС) является:

  • простота технической реализации и надежность;
  • долговечность;
  • простой процесс замены мембран и длительная работоспособность мембран до их замены;
  • компактность и малый вес;
  • низкие удельные затраты энергии;
  • низкий уровень шума;
  • высокая производительность при минимальных эксплуатационных затратах;
  • установки фильтрационного типа снабжены автоматической системой, которая регулирует рабочее давление помпы в зависимости от степени солености воды;
  • возможность обработки различных типов вод (морской воды, малосоленой воды устьев рек, речной и озерной воды) с помощью одной установки;
  • с помощью установок фильтрационного типа (обратный ОСМОС) можно обрабатывать портовые воды, уделив должное внимание стадии префильтрации.

Недостатки дистилляционного типа опреснителей:

  • на выходе получается дистиллированная вода, то есть химически чистая, без каких-либо минералов и солей. Употребление такой воды в пищу приводит к вымыванию солей и минералов из костей, нарушению работы желудочно-кишечного тракта;
  • большие размеры агрегата;
  • большой расход электричества;
  • при опреснении соленой воды, происходит быстрое зарастание накипью поверхностей теплообмена, вследствие чего снижается экономичность работы установки;
  • необходимость постоянно следить за показателями соленомеров, брать пробы для определения качества дистиллята, не реже одного раза в сутки.

Недостатками опреснительной установки фильтрационного типа (обратный ОСМОС) являются:

  • мембрана является расходным материалом, который требует замены каждые 1,5-3 года, в зависимости от интенсивности использования;
  • установка дополнительного фильтра для предварительной очистки масла от воды.

Не вся вода на земле пригодна для использования на нужды человека, и поэтому введены соответствующие стандарты, определяющие требования к воде по видам ее потребления.

Одним из главных ограничений использования воды является ее химический состав. Превышение общего количества солей над установленными нормами или отдельных их компонентов делают воду непригодной для использования.

Морская вода, как и многие воды на континенте, имеет высокое содержание солей. Так, 1 т морской воды содержит 35 кг различных солей. Естественно, что прямое использование такой воды, особенно для питья, невозможно.

Российский ГОСТ на питьевую воду действует с 1982 г. Сейчас он дополнен более новым нормативом.

Санитарные правила и нормы (СанПиН) 2.1.4.550-96 «Питьевая вода».

В соответствии с действующими стандартами и нормами под термином питьевая вода высокого качества подразумевается:

  • Вода с соответствующими органолептическими показателями - прозрачная, без запаха и с приятным вкусом;
  • Вода с рН = 7-7,5 и жесткостью не выше 7 ммоль/л;
  • Вода, в которой суммарное количество полезных минералов не более 1 г/л;
  • Вода, в которой вредные химические примеси либо составляют десятые-сотые доли их ПДК, либо вообще отсутствуют (то есть их концентрации настолько малы, что лежат за гранью возможностей современных аналитических методов).
  • Вода, в которой нет болезнетворных бактерий и вирусов.

Характеристики опреснителей (обратный ОСМОС).

Благодаря особо компактной конструкции опреснители занимают немного места и могут быть свободно размещены на судах малых и средних размеров. Корпус опреснителей ОСМОС изготавливается из нержавеющей стали. Корпус осмотических мембран, выполняется, из высококачественной стали, и эпоксидной смолы, и надежно защищает мембраны от коррозии.

Одной из главной проблем в длительном морском рейсе становится отсутствие пресной воды. Основными показателями, определяющими качество пресной воды, являются соленость, характеризуемая содержанием растворенного хлористого натрия, и жесткость, обусловленная наличием в ней солей кальция и магния.

При установке на выходе еще одного фильтра, поставляемого по запросу клиента, который служит для реминерализации очищенной воды, происходит улучшение вкусовых свойств воды и преобразование ее в абсолютно пригодную для питья.

Кроме того, в случае обработки портовых вод или подозрения на возможное загрязнение воды углеводородами, рекомендуется установить фильтр предварительной очистки для отделения масла и воды, что в любом случае не навредит работе опреснительно-очистительной установки, но однозначно продлит срок службы мембран.

Оборудование для опреснения морской воды, на входе имеет содержание соли в воде 38000 PPM, на выходе 600 PPM.

ООО Дальневосточная Компания «ПРБ» имеет в наличии, на складе во Владивостоке , полностью автоматический Комплекс по опреснению морской воды методом обратного осмоса , производительностью 5 тонн в сутки (включая годовой комплект расходного СЗЧ), которая не требует постоянного присутствия вахтенного и технического персонала.

Обратный ОСМОС





Пресная вода – незаменимая часть нашего рациона, необходимая для выживания. Стремительный рост населения вызвал ее дефицит на планете. Исчерпание запасов питьевой воды заставило человечество искать способы ее самостоятельного изготовления. В качестве источника для опреснения используется мировой океан. Его воды очищают от излишка солей с помощью специальных установок, таких, как опреснитель морской воды.

Существуют различные методы, как опреснить воду в промышленных масштабах. Многие из них связаны с использованием больших энергоемких установок – дистилляторов и специальных фильтров. К основным методам опреснения в промышленности относятся следующие.

Применение химических реагентов

Для опреснения используют специальные вещества, которые реагируют с солями морской воды, образуя нерастворимые химические соединения. После окончания реакции нужно всего лишь убрать полученный осадок методом фильтрации.

В промышленности этот метод используют крайне редко, а в быту – никогда. К основным недостаткам такого способа очистки относятся:

  • большое количество реагентов;
  • значительная длительность процесса;
  • дороговизна.

Метод обратного осмоса

Этот хорошо зарекомендовавший себя способ получения питьевой воды применяется в промышленности давно. Он состоит в использовании очистительных мембран, которые изготавливают из полупроницаемого материала – полиамида или целлюлозы. Воду с высоким содержанием солей пропускают под давлением через мембраны, в результате чего молекулы H2O проходят через поры, а крупные ионы примесей задерживаются. Данный способ позволяет получить достаточно большое количество очищенной воды.

Опресняем воду самостоятельно

Многие люди проживают в засушливых районах, где дефицит пресной воды является серьезной проблемой. В некоторые населенные пункты питьевая вода не доставляется, поэтому местным жителям приходится добывать ее самостоятельно. Они накопили большой опыт,как опреснить морскую воду в домашних условиях.

Дистилляция воды

Вот как сделать опреснитель морской воды своими руками. Его действие основано на таком физическом процессе, как конденсация. Можно просто кипятить морскую воду в кастрюле, накрытой крышкой. Пар скапливается под крышкой и превращается в чистый конденсат. Однако при этом теряется большая часть пресной воды, так как она стекает назад в емкость.

Для решения проблемы можно усовершенствовать данный метод:

  1. Просверлите в крышке для кастрюли отверстие.
  2. Проденьте в него гибкую трубку и накройте кастрюлю крышкой.
  3. Второй конец трубки поместите в другой сосуд.
  4. Трубку накройте мокрым полотенцем, чтобы водяной пар остужался.
  5. Поставьте кастрюлю на огонь и дождитесь, когда вся вода сконденсируется в другом сосуде.

В кастрюле останется соль и остальные примеси, а в другом сосуде – чистая вода.

Но важно учесть, что полученная вода будет дистиллированной и не полезной для организма. Поэтому перед употреблением рекомендуется немного разбавить ее соленой водой.

К преимуществам метода относится его простота и возможность использования в быту, к недостаткам – небольшое количество полученной жидкости.

Метод замораживания

Поучиться,как из морской воды сделать пресную, можно и у жителей холодных районов земного шара. Речь идет об эскимосах, которые пользуются большими запасами пресной воды из ледников. Также они специально выставляют на мороз соленую воду и ждут образования кристаллов льда. Этот лед представляет собой замершие молекулы воды. Его растапливают и используют для питья и приготовления пищи.

Вода с примесями остается в жидком состоянии, поэтому от нее легко избавиться, просто вылив.

Использование специальных установок

В продаже появились специальные опреснительные установки для очистки морской воды. Наиболее популярный из них – солнечный опреснитель. Он обеспечивает испарение молекул H2O с помощью энергии солнца.

На дно помещается соленая вода. Пар конденсируется на стенках конуса, стекает и накапливается в приемнике внизу. Герметичная структура установки создает эффект парника и не позволяет пару выходить наружу, что повышает эффективность метода. Чтобы извлечь чистую воду, нужно, когда все выпарится, открутить пробку и слить жидкость в емкость.

Один из наиважнейших показателей качества питьевой воды – это содержание растворенных в ней соляных примесей. При завышенном показателе минерализации она приобретает не очень приятный горько-соленый привкус.

Особо опасны ситуации, когда процент соли в воде превышает допустимые нормы, что крайне негативно сказывается на состоянии людей, употребляющих ее регулярно.

Последний пример характерен для , имеющей повышенное содержание различных солевых добавок. Есть несколько способов опреснения такой жидкости.

Опасность использования

Соленую воду не рекомендуется применять и в чисто практических или в бытовых целях, заливая ее в бак стиральной машины, например, или в посудную мойку. Любая техника (точнее, входящие в ее состав металлические детали) под воздействием сильных растворов очень быстро разрушаются, вследствие чего сама она со временем приходит в негодность.

Выходом из данной ситуации является опреснение морской воды, которое должно проводиться с соблюдением определенных правил. Ознакомимся с некоторыми из них более подробно.

Способы опреснения

При рассмотрении возможности превращения морской воды в свой пресный аналог следует исходить из того, что этот процесс и прост, и сложен одновременно. В разработку основных его принципов с давних пор вкладывались значительные средства, но положительные результаты были получены совсем не сразу.

Дело в том, что для его успешной реализации в промышленных масштабах требуются огромные затраты энергоресурсов. Лишь на государственном уровне удалось добиться сравнительно неплохих результатов в получении больших объемов пресной воды из неиссякаемых морских источников.

Используемые в промышленных установках методы изменения состава воды принято подразделять на следующие виды:

  • в первую очередь – это дистилляция (или попросту – выпаривание);
  • затем следует опреснение с помощью вымораживания;
  • далее идет процесс, известный под названием «обратный осмос»;
  • замыкает перечень также знакомый многим электродиализ.

В основу второго способа заложено замораживание воды до кристаллического состояния, после чего из кристаллов по известным технологиям выделяется пресная ее составляющая. Наиболее популярными среди всех перечисленных процедур являются методы обратноосмотической очистки, а также дистилляции.

Экстремальные условия

А что делать, если потребовалось опреснять морскую воду в походных условиях? Как показал опыт, для этих целей оптимально подходит самодельный дистиллятор, по принципу своей работы схожий с известными перегонными аппаратами.

Обратите внимание! Суть происходящих процессов в простом опреснителе заключается в нагревании соленой воды до кипения. После чего образовавшийся над ней пар сначала аккумулируется (собирается в одном месте), а затем тут же охлаждается.

В результате всех этих процедур на стенках сборной камеры оседают выпавшие в конденсат (охлажденные) капельки очищенной от соляных примесей воды.

Возможность выделения солей из смеси объясняется тем, что точка кипения у соляных растворов несколько выше, чем у чистой воды. Именно поэтому последняя испаряется раньше и отдельно оседает в сборную емкость.

Для реализации этого метода опреснения в походных условиях обязательно нужно будет запастись следующими предметами и ресурсами:

  • прежде всего, это сама морская вода, которой хватает на берегу моря или соленого озера;
  • далее, берется котелок или чайник, всегда имеющиеся в распоряжении туристов и служащие емкостью под нее;
  • потребуется алюминиевая трубка, заранее приготовленная еще до отправления в поход;
  • основной элемент системы – охлаждающее устройство, функцию которого в данном случае выполняет вырытая в песке на берегу моря глубокая яма;
  • и, наконец, нужна будет еще одна емкость, предназначенная для сбора очищенной от примесей воды (стеклянная бутыль, банка из нержавейки и так далее).

Для дистилляции воды прямо на месте ее забора на берегу моря или озера выкапывается яма глубиной до метра, а затем в нее под небольшим углом помещается сборная емкость (бутылка) со вставленной в ее горлышко трубкой.

Важно! Место их соединения должно быть надежно уплотнено посредством заранее припасенной резиновой прокладки.

Далее эта конструкция присыпается песком так, чтобы наверху оставалась лишь часть горлышка с трубкой. Ее ответный конец располагается над котелком или открытым чайником, наполненным морской водой. Место для разведения костра выбирается на небольшом удалении от бутыли с трубкой.

После разведения огня вода в походной емкости начинает бурлить, пар постепенно распространяется по трубке в зарытую бутыль и оседает в виде конденсата. А из него через определенное время на дне емкости набирается до 200–300 граммов чистейшей пресной воды.

Опреснение в домашних условиях

Наиболее простым и доступным в условиях дома методом очистки соленой воды считается применение системы, состоящей из ряда последовательно соединенных фильтров. Однако даже самые сложные фильтрующие комбинации не способны удалить из нее все имеющиеся примеси вредных веществ. Именно поэтому большой популярностью в народе пользуются знакомые большинству хозяек домашние методы опреснения.

Один из них предполагает помещение бутыли с неочищенной жидкостью в морозилку, где спустя некоторое время происходит замерзание чистой составляющей. Оставшаяся (незамерзшая) часть как раз и является вредной примесью и сливается из бутыли в раковину. Дальше остается лишь дождаться, пока остатки льда не растают при комнатной температуре, после чего талая вода будет готова к употреблению.

В заключение отметим, что известны еще два простых способа очистки и опреснения воды, легко реализуемые в домашних условиях. Первый из них заключается в элементарном ее кипячении, которое продлевается достаточно долго, после чего соль в виде накипи оседает на стенках. А второй – в использовании для фильтрации активированного угля, имеющегося в аптечке у любой хозяйки. Но здесь степень опреснения будет зависеть от концентрации соли.

Существующие разнообразные способы опреснения забортной морской воды можно разделить на две основные группы:

  • 1)опреснение без изменения агрегатного состояния жидкости (воды);
  • 2)опреснение, связанное с промежуточным переходом жидкого агрегатного состояния в твердое или газообразное (паровое).

Опреснение способами первой группы включает в себя такие виды, как химическое, электрохимическое, ультрафильтрация.

При химическом способе опреснения в воду вводят вещества, называемые реагентами, которые, взаимодействуя с находящимися в ней ионами солей, образуют нерастворимые, выпадающие в осадок вещества. Вследствие того, что морская вода содержит большое количество растворенных веществ, расход реагентов весьма значителен и составляет примерно 3-5 % количества опресненной воды. К веществам, способным образовывать нерастворимые соединения с натрием и хлором, относятся ионы серебра и бария, которые образуют выпадающие в осадок хлористое серебро и сернокислый барий. Эти реагенты дорогие, реакция осаждения с солями бария протекает медленно, соли ядовиты. Поэтому химическое опреснение используется редко.

При электрохимическом опреснении (электродиализе) применяют специальные электрохимические активные диафрагмы, состоящие из пластмассы, резины с наполнителем и анионитовых или катионитовых смол. Ванна с рассолом ограничена двумя диафрагмами: положительной и отрицательной. Под действием постоянного тока напряжением 110120 В ионы солей, растворенных в воде, устремляются к электродам. Положительные катионы через катион проницаемые диафрагмы, а анионы через анионитовую диафрагму проходят в крайние камеры, где встречаются с двумя пластинами: анодом и катодом. Встречаясь с одноименно заряженными диафрагмами, они остаются в этих камерах. В результате в промежуточных камерах оказывается обессоленная вода, которая стекает в отдельный сборник. Соли и рассолы из крайних камер отводятся за борт, а образующиеся газы (хлор и кислород) в атмосферу. Камеры, в которых опресняется вода, отделены от рассольных камер полупроницаемыми ионитовыми мембранами. При достаточном количестве пар мембран между анодом и катодом расход электроэнергии зависит от солености морской и опресненной воды: чем меньше разница между ними, тем процесс протекает экономичнее. Поэтому электродиализ целесообразно применять для опреснения слабосоленых вод при допустимом высоком солесодержании опресненной воды (5001000 мг/л). На судах, где требования к солесодержанию достаточно высокие, электродиализные опреснители не находят применения. Опытная электродиализная установка эксплуатировалась на траулере "Ногинск".

Опреснение ультрафильтрацией или так называемым способом обратного осмоса состоит в том, что солевой раствор оказывается под давлением со стороны мембраны, проницаемой для воды и непроницаемой для соли. Преснаявода проникает через мембрану в направлении, обратном обычному осмотическому (когда пресная вода вследствие осмотического давления проникает через мембрану в солевой раствор). В существующих установках производительностью около 4 м3/сут соленая вода под давлением около 150 кгс/см2 продавливается через мембраны ацетилцеллюлозного типа, обработанные перхлоратом магния для увеличения их водопроницаемости. С противоположной давлению стороны мембран установлены пористые бронзовые плиты, способные выдержать большое давление. При испытаниях установки с 1,5 %ным солевым раствором была получена вода с солесодержанием 6001000 мг/л Сl. Применение ультрафильтрации как способа опреснения ограничивается малым сроком службы пленок-мембран и большими размерами фильтрующей поверхности. К методам опреснения второй группы, относятся вымораживание и дистилляция, или термическое опреснение.

Опреснение вымораживанием основано на том, что в естественных природных условиях лед, образующийся в океанах и морях, является пресным. При искусственном медленном замораживании соленой морской воды вокруг ядер кристаллизации образуется пресный лед игольчатой структуры с вертикальным расположением игл льда. При этом в межигольчатых каналах концентрация раствора, а, следовательно, и его плотность, повышаются, и он, как более тяжелый, по мере вымораживания оседает вниз. При растаивании игольчатого льда образуется пресная вода с содержанием солей 5001000 мг/л Сl. При быстром замораживании рассол оказывается включенным в толщу льда, и сильное и интенсивное охлаждение приводит к замерзанию всей массы соленого раствора в единое ледяное тело. Для лучшего опреснения морского льда иногда применяется искусственное плавление его части при температуре ~20°С. Вода, образующаяся при таянии, способствует более полному вымыванию солей из льда. Способ вымораживания достаточно прост и экономичен, но требует сложного и громоздкого оборудования.

Дистилляция, или термическое опреснениенаиболее распространенный на морских судах способ получения пресной воды из забортной морской. Как известно, морская вода представляет собой раствор, состоящий из водылетучего растворителя и солейнелетучего растворенного в воде твердого вещества. Сущность дистилляции заключается в том, что забортную воду нагревают до кипения и выходящий пар собирают и конденсируют. Образуется пресная вода, называемая дистиллятом. Выпаривать воду можно как при кипении, так и без кипения. В последнем случае морскую воду нагревают при более высоком давлении, чем давление в камере испарения, куда направляется вода. Так как при этом температура воды превышает температуру насыщения, соответствующую давлению в камере испарения, то часть поступившей воды превращается в пар, который и конденсируется в дистиллят. Для парообразования используется теплота, содержащаяся в самой испаряемой воде, которая при этом охлаждается до температуры насыщения оставшегося рассола. Основное термодинамическое различие между процессами заключается в следующем: при кипящем процессе теплота подводится от внешнего источника и поддерживает температуру насыщения при данном постоянном давлении в испарителе, т. е. процесс является изотермическим; при некипящем процессе теплота подводится к морской воде без кипения до температуры выше температуры насыщения, соответствующей давлению в испарителе, и, следовательно, процесс испарения идет за счет внутренней теплоты и является адиабатным. Недостатком термического опреснения избыточного давления является его малая экономичность: на получение 1 кг дистиллята расходовалось до 700 ккал, что соответствует выходу 1012 т дистиллята на 1 т расходуемого топлива. Этот недостаток удалось преодолеть применением вакуумных испарителей с использованием утилизационной теплоты двигателей внутреннего сгорания и парогенераторов. Дистилляция, как уже было отмечено, основной способ опреснения морской воды, применяемый на судах торгового флота, и поэтому в дальнейшем будут рассмотрены только опреснительные установки, работающие на термическом опреснении.

В настоящее время исследуются новые способы водоопреснения, в частности путем образования кристаллогидратов и при помощи гидрофобного теплоносителя. Принцип кристаллогидратов заключается в выделении пресной воды из соленых растворов в форме кристаллов, которые в специальном расплавит еле разлагаются на чистую воду и гидрат-агент. В качестве гидрат-агентов для повторного использования в процессе используются такие вещества, как метилбромидгидраты, метилхлоридгидраты, гидраты изо-бутана. Сущность гидрофобного теплоносителя заключается в том, что различные смеси углеводородов, парафины, фторированные масла и другие вещества, инертные по отношению к воде и растворенным в ней солям, впрыскивают в теплонесущий дистиллят для нагрева. После этого дистиллят и теплоноситель разделяют и последний впрыскивают в морскую воду. При нагреве часть воды испаряется и образующийся пар в конденсаторе превращается в дистиллят. Гидрофобный теплоноситель отделяют от оставшегося после выпаривания рассола и возвращают в теплонесущий дистиллят для последующего нагрева.

Схемы опреснительных установок поверхностного и бесповерхностного типов изображены на рис. 1. В испарителе 1 поверхностного типа (рис. 1, а) находится греющая батарея 2, через которую проходит теплоносительпар или горячая вода.

Рис.1

а поверхностной (кипящей); бес поверхностной (адиабатной).

В результате нагрева и кипячения рассола в испарителе выделяется из морской воды так называемый вторичный пар, который направляется по трубопроводу в конденсатор 9. Пар охлаждается забортной водой, прокачиваемой по змеевику циркуляционным насосом 8, конденсируется и дистиллят откачивается дистиллятным насосом 7. Часть забортной воды, выходящей в подогретом состоянии из конденсатора, отводится через регулятор уровня 6 в испаритель. Для поддержания постоянной солености рассола в испарителе производится продувание рассольным насосом 4.

В установке с бесповерхностным испарителем 1 (рис. 1, б) отсутствуют греющие элементы с твердой поверхностью для теплопередачи. Морская вода перед поступлением в испаритель предварительно нагревается в подогревателе 3 теплоносителем до температуры, которая превышает температуру насыщения, соответствующую давлению, поддерживаемому в испарителе. При поступлении воды из подогревателя, где вода не кипит, так как давление в нем более высокое, в испаритель с более низким давлением происходит самоиспарение некоторой части воды за счет внутренней теплоты. Образовавшийся пар, как и в предыдущей схеме, поступает в конденсатор 9, прокачиваемый забортной водой от насоса 8, конденсируется и откачивается дистиллятным насосом 7. Часть прокачиваемой охлаждающей воды отводится для питания испарителя через регулятор уровня 6. Неиспарившаяся вода из испарителя циркуляционным рассольным насосом 5 многократно прокачивается через подогреватель 3 и вновь поступает на испарение, при этом часть рассола выдувается за борт через клапан. Преимущество бесповерхностных испарителей заключается в том, что вследствие отсутствия поверхности нагрева в них не образуется накипь, но они требуют установки насосов большей производительности.

Кроме рассмотренного основного признака способа испарения дистилляционные опреснительные установки можно классифицировать по ряду других признаков:

по назначению: опреснительные для получения питьевой воды; испарительные для получения котловой воды; комбинированные для получения питьевой, мытьевой и питательной воды;

  • -по роду теплоносителя: паровые, водяные, газовые, электрические;
  • -по давлению в испарителе: избыточного давления; вакуумные;
  • -по способу регенерации теплоты: компрессионные, в которых вторичный пар сжимается и используется в качестве греющего; ступенчатые, в которых пар, получаемый в предыдущих испарителях, используется в качестве греющего пара в последующих;
  • -по связи с судовой энергетической установкой: автономные, не связанные с работой СЭУ; неавтономные, включаемые в цикл работы главных и вспомогательных дизелей и парогенераторов. К ним относятся распространенные на промысловых судах утилизационные опреснительные установки, использующие теплоту водяной системы охлаждения главных двигателей.

Конструкция испарителя поверхностного типа (рис.2) вакуумной опреснительной установки СРТ с использованием в качестве теплоносителя отработавших газов от главного дизеля показана на рис. 2. Испаритель состоит из цилиндрического вертикального корпуса 4 с размещенными внутри двумя трубными решетками 5 и 9, к которым приварены трубки 8, расположенные в шахматном порядке. В межтрубном пространстве имеются две направляющие перегородки 7.

Отработавшие газы главного двигателя входят через патрубок 14 в межтрубное пространство, совершают два поворота, через стенки трубок передают теплоту на испарение рассола и уходят через патрубок 6 в атмосферу. В нижней крышке 13 расположены входной 12 и выходной 11 патрубки для морской воды и рассола, а также закрытый патрубок 10 с цинковым протектором для предохранения испарителя от коррозии. В верхней крышке имеются сепараторы пара: конусный 3 и сетчатый 2 с кольцами Рашига 1. Уравнительная трубка поплавкового регулятора уровня присоединена к патрубку 15. Производительность испарителя равна 500 кг/ч.

gastroguru © 2017