Виды полей и их характеристика. Экс-министр сергей шматко может заняться растениеводством

Нарушения радиоактивного фона в локальных условиях и тем более глобальные опасны для существования биосферы и могут привести к неисправимым последствиям. Причиной увеличения радиоактивного фона является активная деятельность человека. Создание крупной промышленности, научных установок, энергетических источников, военной техники и др. может приводить к локальным изменениям фона. Но наиболее опасными причинами нарушений естественного радиоактивного фона являются выбросы радиоактивных частиц,которые могут возникнуть при ядерных взрывах или при эксплуатации атомных электростанций (АЭС).

В основе ядерных взрывов и работы АЭС лежит явление деления ядер радиоактивных элементов, например, ядер урана. Это явление заключается в том, что при бомбардировке нейтронами ядер изотопа урана его ядра распадаются на две примерно равные части. Процесс деления ядра сопровождается испусканием двух или трёх нейтронов, например: . Эта реакция одна из типичных, хотя в природе существуют ещё многие другие реакции деления урана.

Важно, что при делении урана высвобождается огромное количество энергии, так как масса ядрабольше суммарной массы осколков деления.

Радиоактивные частицы выпадают на поверхность земли, образуя радиоактивный след. Радионуклиды, находящиеся в виде аэрозолей в воздухе, а также осевшие на земную поверхность, могут представлять для человека опасность. Оценку степени опасности можно получить по активности препарата А: А=-dN/dt, где N – количество распадающихся ядер. Активность данного препарата измеряется в кюри(Ku): 1Ku=3,7*10^10 распад/с

Активность уменьшается со временем по экспоненциальному закону: , где λ – постоянная распада, N0 – начальное количество ядер.

Для точечных источников излучений мощность экспозиционной дозы уменьшается с расстоянием по закону:, где r – расстояние от источника излучения, - гамма-постоянная, зависящая от природы радиоактивного источника.

Таким образом, при выпадении радионуклидов на почву степень опасности их влияния на организм зависит от природы радиоактивного изотопа, его активности и расстояния r от человека до источника, а экспозиционную дозу можно оценить из соотношения где ∆t – время облучения.


Вихревое поле
Вихревое поле - поле, силовые линии которого являются замкнутым.
Гравитационное поле
Гравитационное поле - поле, которое создает вокруг себя тело, обладающее массой. Посредством гравитационных полей взаимодействуют физические объекты.
Материя
Материя - объективная реальность, данная нам в ощущениях.
Считается, что материя существует либо в виде вещества, либо в виде поля.
Формами существования материи являются пространство и время.
Силовые линии напряженности
Силовые линии напряженности - воображаемые линии, проведенные в гравитационном, магнитном или электрическом силовом поле так, что в каждой точке пространства направление касательной к этим силовым линиям совпадает с направлением напряженности поля.
Электромагнитное поле
Электромагнитное поле - особый вид материи:
- посредством которого осуществляются электромагнитные взаимодействия;
- представляющий собой единство электрического и магнитного полей.
В каждой точке электромагнитное поле характеризуется:
- напряженностью и потенциалом электрического поля; а также
- индукцией магнитного поля.
- индукцией магнитного поля.
Электрическое поле - особая форма существования материи, посредством которой осуществляется взаимодействие между покоящимися или движущимися электрическими зарядами.
Физическое поле - особый вид материи. Физические поля связывают составные части вещества в единые системы и передают с конечной скоростью действие одних частиц на другие. Различают гравитационные, электромагнитные и другие поля.
Магнитное поле - особая форма существования материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами. Магнитное поле:
- является формой электромагнитного поля;
- непрерывно в пространстве;
- порождается движущимися зарядами;
- обнаруживается по действию на движущиеся заряды;
- описывается уравнениями Максвелла.



Вокруг человека существуют электромагнитные и акустичес­кие поля (гравитационное поле и элементарные частицы оста­ются за пределами нашего рассмотрения).

Можно выделить основные 4 диапазона электромагнитного излучения и 3 диапазона акустического излучения, в которых ныне ведутся исследования (рис. 12.1).

Рис. 12.1. Схема электромагнитных (справа) и акустических (слева) собственных полей человека. Электромагнитные поля: Е - электри­ческое поле, В - магнитное, СВЧ - сверхвысокочастотные электро­магнитные волны дециметрового диапазона, ИК - электромагнитные волны инфракрасного диапазона, видимое - оптический диапазон излучений. Акустические поля: НЧ - низкочастотные колебания, КАЭ - кохлеарная акустическая эмиссия, УЗ - ультразвуковое излу­чение. Цифры - характерные частоты излучений (в герцах). Зашт­рихованы области тепловых излучений. Справа и слева указаны на­звания датчиков и приборов для регистрации соответствующих полей. СКВИД - сверхпроводящий квантовый интерферометр, ФЭУ - фотоэлектрический умножитель.

Электромагнитные поля. Диапазон собственного электромаг­нитного излучения ограничен со стороны коротких волн опти­ческим излучением, более коротковолновое излучение - вклю­чая рентгеновское и у-кванты - не зарегистрировано. Со стороны длинных волн диапазон можно ограничить радиовол­нами длиной около 60 см. В порядке возрастания частоты че­тыре диапазона электромагнитного поля, представленные на рис. 12.1, включают в себя:

· низкочастотное электрическое (Е) и магнитное (В) поле (частоты ниже 103 Гц);

· радиоволны сверхвысоких частот (СВЧ) (частоты 109- 1010 Гц и длина волны вне тела 3-60 см);

· инфракрасное (ИК) излучение (частота 10м Гц, длина вол­ны 3-10 мкм);

· оптическое излучение (частота 1015 Гц, длина волны по­рядка 0,5 мкм).

Такой выбор диапазонов обусловлен не техническими воз­можностями современной электроники, а особенностями био­логических объектов и оценками информативности различных диапазонов для медицины. Характерные параметры различных электромагнитных полей, создаваемых телом человека, приве­дены в табл. 12.1 .

Источники электромагнитных полей разные в различных ди­апазонах частот. Низкочастотные поля создаются главным об­разом при протекании физиологических процессов, сопровож­дающихся электрической активностью органов: кишечником (-1 мин), сердцем (характерное время процессов порядка 1 с), мозгом (-0,1 с), нервными волокнами (-10 мс). Спектр частот, соответствующих этим процессам, ограничен сверху значени­ями, не превосходящими -1кГц.

В СВЧ и ИК-диапазонах источником физических полей яв­ляется тепловое электромагнитное излучение.

Чтобы оценить интенсивность электромагнитного излучения на разных длинах волн, тело человека, как излучатель, можно с до­статочной точностью моделировать абсолютно черным телом, ко­торое, как известно, поглощает все падающее на него излучение и поэтому обладает максимальной излучающей способностью.

Излучательная способность тела е^т - количество энергии, ис­пускаемой единицей поверхности тела в единицу времени в еди­ничном интервале длин волн по всем направлениям - зависит от длины волны А. и абсолютной температуры тела Т.

Эта функция имеет максимум на длине волны Х.т «= Ьс / (5кТ), что при температуре человеческого тела Т = 310 К составляет около 10 мкм. Поэтому ИК-излучение тела человека измеряют тепловизорами в диапазоне 3-10 мкм, где оно максимально.

Из рис. 12.2 следует, что в СВЧ-диапазоне, в котором длина волны в 10* раз больше, плотность энергии теплового излуче­ния на много порядков меньше.

Измерение теплового излучения позволяет определить тем­пературу тела человека из-за того, что спектральная зависи- мость теплового излучения меняется с ростом температуры. На рис. 12.2 приведены кривые для двух температур черного тела: 290 К (кривая 1) и 310 К (кривая 2). Столь большую разность температур мы выбрали, чтобы ярче выделить различия меж­ду кривыми. Видно, что рост температуры всего на 20 К вызы­вает увеличение интенсивности излучения в 1,5 раза (в ИК-ди- апазоне) - в других диапазонах он заметно меньше.

Акустические поля. Диапазон собственного акустического из­лучения ограничен со стороны длинных волн механическими колебаниями поверхности тела человека (0,01 Гц), со стороны коротких волн ультразвуковым излучением, в частности, от тела человека регистрировали сигналы с частотой порядка 10 МГц.

Рис. 12.2. Спектральная плотность излучательной способности теп­лового электромагнитного излучения абсолютно черного тела как функция длины волны X. Выбраны логарифмические шкалы по обе­им осям, поскольку величины е^т и X, изменяются на много порядков. Небольшие видимые отличия кривых 1 и 2 на самом деле соответству­ют большим изменениям е^т(в несколько раз)

В порядке возрастания частоты (цифры на рис. 12.1 ) три диа­пазона акустического поля включают в себя: 1) низкочастотные колебания (частоты ниже 10я Гц); 2) кохлеарную акустическую эмиссию (КАЭ) - излучение из уха человека (V ~103 Гц); 3) ульт­развуковое излучение (V - 1-10 МГц).

Источники акустических полей в различных диапазонах ча­стот имеют разную природу. Низкочастотное излучение созда­ется физиологическими процессами: дыхательными движени­ями, биением сердца, током крови в кровеносных сосудах и некоторыми другими процессами, сопровождающимися коле­баниями поверхности человеческого тела в диапазоне прибли­зительно 0,01 - 103 Гц. Это излучение в виде колебаний по­верхности можно зарегистрировать контактными, либо бес­контактными методами, однако его практически невозможно измерить дистанционно с помощью микрофонов. Это связано с тем, что идущие из глубины тела акустические волны прак­тически полностью отражаются обратно от границы раздела «воздух-тело человека* и не выходят наружу в воздух из тела человека. Коэффициент отражения звуковых волн близок к единице из-за того, что плотность тканей тела человека близ­ка к плотности воды, которая на три порядка выше плотности воздуха.

У всех наземных позвоночных существует, однако, специаль­ный орган, в котором осуществляется хорошее акустическое согласование между воздухом и жидкой средой, - это ухо. Сред­нее и внутреннее ухо обеспечивают передачу почти без потерь звуковых волн из воздуха к рецепторным клеткам внутренне­го уха. Соответственно, в принципе, возможен и обратный про­цесс - передача из уха в окружающую среду - и он обнаружен экспериментально с помощью микрофона, вставленного в уш­ной канал.

Источником акустического изучения мегагерцевого диапа­зона является тепловое акустическое излучение - полный ана­лог соответствующего электромагнитного излучения. Оно воз­никает вследствие хаотического теплового движения атомов и молекул человеческого тела. Интенсивность этих акустических волн, как и электромагнитных, определяется абсолютной тем­пературой тела.

Компьютерные программы работают с колоссальным количеством информации, которую необходимо где-то хранить. Специально для этой цели создаются базы данных, обеспечивающие структурированное представление сведений и удобный доступ к ним. Один из самых популярных способов организации таких хранилищ - табличный, в которых для разных типов информации можно выбрать специальные типы полей. Это облегчает манипуляции с данными и позволяет экономить ресурсы.

Табличные базы данных

Табличные, или реляционные, широко распространены из-за своего удобства и развитой инфраструктуры. Существует множество СУБД - систем управления, обеспечивающих полный контроль над информацией приложения.

Каждая база состоит из нескольких таблиц, олицетворяющих определенную сущность или отношение сущностей. Например, в виде таблицы могут быть представлены данные о студентах университета или информация об итогах экзаменов.

Столбцы таблицы называются полями и содержат конкретный атрибут сущности. Так, в таблице "Студенты" в качестве полей выступают:

  • фамилия, имя, отчество;
  • номер зачетки;
  • дата рождения;
  • номер телефона.

Строки называются записями и представляют отдельный реальный объект (конкретного студента).

Количество столбцов (полей) таблицы определено при ее создании и больше не изменяется. Строки же могут добавляться, удаляться и редактироваться в любой момент.

С первого взгляда очевидно, что информация, хранящаяся в поле "Ф.И.О." существенно отличается от информации в поле "№ зачетки" или в поле "Дата рождения". Так как манипуляции с разными типами данных осуществляются по разным алгоритмам, целесообразно заранее определить, какого рода сведения будут храниться в конкретном поле таблицы.

Каждая база данных определяет, поля каких типов она может обрабатывать. Основные виды информации, например, числовая, символьная, поддерживаются в любой системе. Кроме того, некоторые базы могут предоставлять собственные

Поля и их свойства

Поле записи является наименьшей именованной единицей информации в базе данных. Оно имеет два обязательных свойства:

  • уникальное в пределах таблицы имя, по которому к нему можно обращаться;
  • тип данных, хранящихся в нем.

Поле может быть отмечено как уникальное или ключевое.

Свойство уникальности означает, что для всех записей таблицы значение данного поля не может повторяться.

Ключевыми назначаются поля, наиболее активно участвующие в выборках данных. По ним будут выстроены индексы - дополнительные структуры, облегчающие поиск.

Каждая таблица в базе должна иметь первичный ключ, уникальный для каждой записи и однозначно ее определяющий. Он может состоять из одного или нескольких полей. Разумнее всего выбирать в качестве первичного ключа поля, имеющие короткие значения. Например, в таблице "Студенты" в качестве первичного ключа может выступать поле "№ зачетки".

Свойства целостности

Для нормального безошибочного функционирования крайне важно сохранять целостность данных. Это означает, что каждое поле каждой записи должно принимать именно то значение, которое ожидается. Например, номером зачетки всегда будет число, а в имени студента цифр быть не должно.

Кроме того, некоторые поля совершенно необходимы для описания сущности, в то время как заполнение других необязательно. У студента может не быть телефона, но имя и зачетка есть всегда.

Обеспечение целостности данных контролируется несколькими свойствами:

  • тип поля определяет вид данных, которые могут являться его значением;
  • обязательность запрещает вносить в таблицу записи с пустым полем;
  • значение по умолчанию позволяет не заполнять поле, но не оставлять его пустым;
  • уникальность обеспечивает однозначную идентификацию сущности в пределах таблицы;
  • максимальная или точная длина значения поля в символах;
  • способ форматирования данных;
  • различные дополнительные условия (максимальная и минимальная дата).

Основные типы и форматы полей, поддерживаемые большинством СУБД:

  • числовые - целые и вещественные;
  • строковые;
  • бинарные;
  • логические;
  • дата и время;
  • перечисления и множества.

В некоторых базах в отдельный тип могут быть выделены гиперссылки, денежные величины, примечания, сообщения об ошибках.

Тип поля определяет набор ограничений целостности, которые могут быть к нему применены. Во многих эти типы специфицированы и изначально включают в себя ряд ограничений. Хорошим примером может служить тип TINYINT в СУБД MySQL, принимающий целые числа в ограниченном диапазоне.

Строки

Строковые значения могут содержать любые символы. Основное ограничение накладывается на длину.

Строки могут быть фиксированной или переменной длины. Во втором случае обычно устанавливается максимально возможный размер. Наиболее распространенное ограничение по длине для строк в БД - 255 символов.

Названия строковых типов полей в разных СУБД могут отличаться. Наиболее популярные:

  • CHAR - фиксированная длина до 255 символов. Если размер строки меньше установленного, она будет дополнена пробелами.
  • VARCHAR, TINYTEXT - переменная длина до 255 символов, для хранения размера тратится дополнительный байт.
  • TEXT, MEMO - переменная длина до 65.535 символов.
  • MEDIUMTEXT - максимум 16.777.215 знаков.
  • LONGTEXT - максимально 4.294.967.295 символов в строке.

Строковый тип поля базы данных позволяет хранить в нем пароли, короткие описания, анкетные данные, адреса, номера телефонов, статьи. С этой информацией не проводятся никакие математические операции. Строки могут сравниваться в лексикографическом порядке.

Очень большие фрагменты текста могут также храниться в полях типа BLOB, которые рассмотрены ниже.

Возможные ограничения целостности: длина строки, обязательность, значение по умолчанию.

Числа

Существует большое количество числовых форматов, поддерживаемых базами данных: целые, длинные целые, вещественные, дробные с плавающей и фиксированной точкой.

Над числами могут проводиться математические операции. В базе данных могут храниться и положительные, и отрицательные числовые значения. СУБД определяют несколько числовых типов, имеющих разное ограничение размера.

Для целых чисел:

  • TINYINT, байт - диапазон значений 0 - 255 (или -127 - 128);
  • SMALLINT - от 0 до 65.535 (от -32.768 до 32.767);
  • MEDIUMINT - от 0 до 16.777.215 (от -8.388.608 до 8.388.607);
  • INT - от 0 до 4294967295 (от -2.147.483.648 до 2.147.483.647);
  • BIGINT - от 0 до 18.446.744.073.709.551.615 (от -9.223.372.036.854.775.808 до 9.223.372.036.854.775.807).

Для вещественных чисел:

  • FLOAT - число знаков в дробной части мантиссы не больше 24.
  • DOUBLE, REAL - число с двойной точностью, после точки может быть до 53 знаков.

Существует еще один специфический тип поля БД - DECIMAL (NUMERIC). Это такое же число, как DOUBLE, записанное, однако, в виде строки.

Всегда следует выбирать минимально возможный размер поля. Например, для хранения экзаменационной оценки студента вполне хватит одного байта TINYINT. Это позволяет экономить ресурсы базы данных. Например, поля BIGINT относятся к самым редко используемым типам, так как практически ни одно приложение не оперирует числами в таком огромном диапазоне.

Возможные ограничения целостности данных:

  • размер;
  • форматирование данных (в некоторых СУБД): числа могут быть представлены в процентном, экспоненциальном, денежном формате;
  • размер дробной части;
  • значение по умолчанию;
  • уникальность;
  • автозаполнение (нумерация записей).

Поля с числовым типом данных зачастую становятся первичным индексом таблицы (при условии уникальности значений).

Счетчик

Поля-счетчики имеют числовой тип данных, но их значение присваивается каждой новой записи автоматически, самой базой. Каждый раз счетчик просто увеличивается на единицу, обеспечивая нумерацию строк в таблице.

Благодаря своей уникальности такие поля могут использоваться как суррогатный первичный ключ, ведь они позволяют однозначно определить каждую запись.

Ограничений целостности у счетчиков нет, так как их заполнение берет на себя сама база данных.

Дата и время

Очень удобны для работы поля с типом данных "Дата" и "Время". Они позволяют сохранять данные в различных форматах:

  • DATE - только дата в формате "ГГГГ-ММ-ДД", например, "2018-04-04";
  • DATETIME - дата вместе со временем в формате "ГГГГ-ММ-ДД ЧЧ:ММ:СС", например, "2018-04-04 17:51:33";
  • TIME - только время в формате "ЧЧ-ММ-СС";
  • YEAR - год в формате "ГГ" (17) или "ГГГГ" (2017);
  • TIMESTAMP - временная метка, которая может обозначать, например, точный момент внесения записи в базу. Формат может быть разным, например, "ГГГГММДДЧЧММСС".

Основным ограничением целостности является способ форматирования данных.

Логические значения

Самый простой тип информации - логический, или булев. Он допускает всего два взаимоисключающих значения: TRUE (истина, 1) и FALSE (ложь, 0).

Поля с используются для хранения так называемых флагов, которыми можно отмечать, получает студент стипендию или нет.

Бинарные данные

Базы данных предусматривают возможность хранения больших объемов информации. Аудио- и видеофайлы, изображения, фрагменты скомпилированного кода хранятся в BLOB-виде (Binary Large Object, двоичный большой объект).

Поля, предназначенные для записи таких данных, должны иметь один из следующих типов:

  • BINARY - двоичная строка фиксированной длины;
  • TINYBLOB;
  • BLOB;
  • MEDIUMBLOB;
  • LONGBLOB;
  • OLE-объект (Object Linking and Embedding, технология связывания и вставки объектов) - в Microsoft Access;

Массив двоичных данных не имеет пользовательских ограничений целостности. Работу с BLOB-объектами разные базы реализуют по-разному.

Перечисления

В некоторых СУБД существует возможность создать поле, значение которого будет выбираться из заранее определенного списка допустимых значений. Это очень похоже на работу радио-кнопки в HTML.

Такой тип поля называется ENUM. В разрешенном списке может быть максимум 65.535 строковых значений, из которых выбирается только одно.

Ограничение целостности в этом случае очевидно - все возможные значения поля базы заранее определены и не могут принимать других значений.

Множества

Очень похоже работает тип данных SET. Он также принимает список допустимых строковых значений, но позволяет выбрать сразу несколько из них. Так работает элемент чекбокс. Максимальное количество элементов в наборе - 64.

Выбор правильного типа поля базы данных имеет большое значение для организации работы приложения. Это связано с экономией ресурсов и различными способами обработки информации разных видов.

При проектировании и создании базы данных важно точно определиться с форматом и ограничениями целостности информации в каждом поле каждой таблицы. Из подходящих типов, предлагаемых конкретной СУБД, рекомендуется выбирать тот, который занимает меньше всего места.

По определению система рациональных чисел является полем, поэтому свойства полей являются также свойствами рациональных чисел. Рассмотрим основные свойства поля.

  • 4.3.1. Теорема. Пусть дано поле (Р, +, ) с нулем 0 и единицей е. Для любых элементов a,b,c,d еР:
  • 1) если я6 = ,то я*0 и Ь = а~
  • 2) (отсутствие делителей нуля) если ab = 0, то а = 0 или b = 0;
  • 3) (свойство сократимости для умножения) если ас = Ьс и с Ф 0, то а = Ь ;

4) - = . тогда и только тогда, когда ad -ос ; b d

Ч а ^ с ad ± Ьс b d bd

8) если аФ 0, то (-) = -;

. „ _ . ас a

9) (основное свойство дроби) - = -.

Доказательство. 1) Пусть ab = e. Если предположить, что а = 0, то получим e = ab = 0 b = 0 - пришли к противоречию.

Следовательно, а* 0 и существует элемент а~. Умножив равенство ab = е на а~ х , получим Ь = а~ { .

  • 2) Пусть ab = 0. Если а = 0, то доказывать нечего. Если же а* 0, то существует элемент а~ х. Умножив равенство ab = 0 на я -1 , получим b = 0.
  • 3) Доказательство свойства сводится к умножению данного равенства на с -1 .
  • 4) Пусть - = -, тогда ab~ l =cd~ l . Умножив обе части равенства

на bd, получим ad=bc. Обратное утверждение получаем теми же рассуждениями в обратном порядке.

Доказательство остальных свойств отношений предоставляется читателю. ?

Упорядоченное поле рациональных чисел

Введем отношение «меньше» для рациональных чисел с помощью отношения «меньше» для целых чисел. 11ри этом будем считать, что

для любого рационального числа - знаменатель b > 0.

4.3.2. Определение. Для любых -eQ положим - тогда

и только тогда, когда ad .

Легко доказать, что система (Q> Q, +, ,

  • 4.3.3. Определение. Упорядоченным полем называется система (Р, +, ,
  • 1. (Р,+, ) - поле;
  • 2. (Р у линейно упорядоченное множество;
  • 3. для любых jc,>»,z€P, если х то x + z (- монотонность сложения ), и если х 0, то xz (- монотонноет ь умножения ).

Таким образом, система (0, +, »упорядоченным полем рациональных чисел.

Рассмотрим произвольное упорядоченное поле (Р, +,?,Р замкнуто относительно сложения, последовательно получаем: 2 = 1 + 1 еР, 3 = 2 + 1 еР, ... Поскольку 1>0, то 2>0, 3>0, ... Таким образом, мы получаем, что все новые и новые натуральные числа принадлежат Р. В итоге убеждаемся, что Nc/ Но поле вместе с каждым своим элементом содержит ему противоположный, следовательно, -N^P. Итак,

Z = Nkj{0}^j-NС.Р. Но в поле из того, что w.weZcP и /?*0,

следует, что т, п~ ] еР, откуда - = /и-л -1 еР. Таким образом,

Q = Д т,п е Zyti * 0 (сР, то есть всякое упорядоченное поле п

содержит упорядоченное поле рациональных чисел (образно говоря, ухватившись за единицу, мы втянули в Р все множество Q ). Докажем это утверждение в более строгом виде.

4.3.4. Теорема. Всякое упорядоченное поле содержит упорядоченное подполе, изоморфное упорядоченному полю

рациональных чисел.

Доказательство. Пусть дано упорядоченное поле (Р, +, ?,

с единицей е . Обозначим Q = {- | т,п eZ,n*Q} и определим

отображение ->??, положив (р{-) = - для любого -eQ.

п пе п

Докажем, что является изоморфизмом (??,+,-, на (Q, +,-,.

1. (р - взаимно однозначное отображение. Пусть (р{-) = (р (-),

т w. .. ,ш ч лп. те т,е

докажем что - = --. Из условия (р{-) = (р{--) получаем - = -=-, п щ п л, пе ще

откуда те ще = т х е пе и тп х е = т х пе. Предположим, что тп х Фт х п> пусть, например, тщ Тогда т х п-тп х >0, то есть т х п-тп х е N и (т ] п-тп 1)е = 0. Но в 3.3.15 доказано, что в упорядоченном кольце, а значит и в упорядоченном поле, для любого натурального числа к имеем ке> 0 - пришли к противоречию. Следовательно, тп х = т х п , т пи

откуда - = --. п п х

  • 2. Очевидно, (р - отображение на Q.
  • 3. Докажем, что сохраняет операции сложения и умножения, а

также отношение «меньше». Для любых -€ Q имеем:

Для умножения - аналогично. Наконец, сохраняет отношение т пц _ _

«меньше», так как - 0, л, > 0, тогда и только тогда, л л,

когда /л л, л, л. Но это равносильно /л, - л-/л-л, e;V, и по 3.3.15,

Нетрудно видеть, что изоморфный образ упорядоченного поля рациональных чисел есть упорядоченное поле рациональных чисел, поэтому из доказанной теоремы получаем следующую краткую характеризацию этой числовой системы.

4.3.5. Следствие. Система (Р, +,-,есть упорядоченное поле рациональных чисел тогда и только тогда, когда она является минимальным упорядоченным полем.

Если между целыми числами л и л +1 нет ни одного целого числа, то между любыми двумя различными рациональными числами можно найти новое рациональное число. Отметим это свойство в наиболее общем виде.

4.3.6. Предложение. Во всяком упорядоченном поле (Р, +,-,для любых элементов a,bеР, где а

Доказательство. Можно взять, например, с = а+ е Р .

4.3.7. Теорема. Упорядоченное поле рациональных чисел удовлетворяет аксиоме Архимеда: для любого положительного aeQ и любого Ь&0 существует натуральное число п такое, что па>Ь.

Доказательство. Пусть а = -, где kjneN , и Ь = - у где

psZ, qsN. По аксиоме Архимеда для целых чисел, для целого числа mq > 0 и целого числа кр существует натуральное число п такое, что nmq>kp. Пользуясь монотонностью умножения, разделим

это неравенство на kq> 0. Получим п - > -, то есть па>Ь. ?

Тема силовых полей начинает новый цикл статей, посвящённых многоуровневому восприятию нашего мира и согласовании архитектурной и градостроительной деятельности с полевыми, тонкоматериальными структурами. В настоящее время существует несколько подходов к архитектурному проектированию, их можно объединить в следующие группы: академический или ортодоксальный, традиционный, современный альтернативный, не профессиональная самодеятельность и метафизический. Легко догадаться, что наибольший интерес представляет последний пункт. Примечательно то, что все концепции и разработки предыдущих статей всей нашей теории и практики правильнее отнести к альтернативному проектированию. Причина такого определения – это источник информации и привязки, которые созданы человеческим умом и не полностью согласованы с реальностью.

Во всех случаях, кроме метафизического способа и его наследника – традиции, в первую очередь деятельность ведется относительно желания и мнения человека, в лучшем случае используется рациональность и логика. Это конечно разумнее хаоса, но архитектура, созданная таким путем, соотносится с миром только на зримом, материальном уровне, невидимый же план здесь не учитывается. В традиционной архитектуре метафизический аспект имеет место, но он не осознан, а лишь повторяем в качестве устоявшихся приемов. Новый цикл статей, и эта тема в частности, меняет все было проектирование кардинальным образом. Она столь велика, что потребуется несколько этапов хотя бы для ознакомления. Начнем с глобального раздела – общего устройства силового каркаса или геобиологической сети, это большое теоретическое обоснование, для глубинного понимания метафизического проектирования, назовем пока что данный способ этим термином.

ГЕОБИОЛОГИЧЕСКАЯ СЕТЬ

Все в космосе имеет жизнь, звезды, земли и солнца также являются живыми существами. Следовательно, их организм схож с человеческим. В этом отношении нас интересует то, что скрыто, а именно, нервная система земель, которая имеет очень большое значение. Названий, описывающий силовой каркас или нервную систему нашей Земли множество: лей линии, геобиологическая сеть, линии Хартамана и т.д. Это знание было всегда, нынче его просто заново оформили в несколько новых систем. Они отражают различные его грани и детали, а в сумме дают обобщенное представление о картине в целом. К четко сформулированным названиям отнесем следующие сети:

  • Э. Хартмана (2м x 2,5м),
  • Ф. Пейро (4м x 4м),
  • М. Курри (5м x 6м),
  • З. Витмана (16м x 16м)

Рисунок 1, рисунок 2

Визуально, все они представляют из себя сетку, систему линейных связей, узлов в точках пересечения и образующихся в результате ячеек. Из множества ячеек формируется структура, подобная параллелям и меридианам, поэтому геобиологическую сеть иногда называют координатной сетью, хотя это не совсем верно. В малом масштабе сеть Хартмана может изображаться квадратами, но на самом деле ячейки имеют форму неправильной трапеции, по причине сферической формы Земли, они постепенно уменьшаются к магнитным полюсам. Сеть Курри повернута под углом 45 градусов и имеет самостоятельное более глобальное значение, она также соотносится с Лей-линиями, имеющими аналогичное положение. Обе сети взаимодействуют друг с другом и должны рассматриваться комплексно (рисунок 1). С сеткой Хартмана взаимодействует физиологическая часть, а с сеткой Курри («электрической»), - одухотворяющее начало. Остальные сети не пользуются большой популярностью, их объективность не совсем очевидна, возможно они отображают несколько иные силовые структуры (рисунок 2). А нас сейчас больше интересует масштабируемость сети Хартмана. Сравнение этой сети с нервной системой весьма условно, но это наиболее близкое понятие, самое главное, что по связующим линиям движется информация и энергия. В любом случае это орган нашей живой Земли, который нельзя игнорировать.

В структуре силовых линий или полос имеется некая иерархия, то есть между собой они отличаются по мощности, выраженной в первую очередь шириной. В определенной мере это можно сравнить с матрешкой, в которой малые структуры заключены в большие, идентичные им по форме. Места пересечения полос сетки образуют узлы диаметром около 25 см, которые чередуются по направлению движения энергии в шахматном порядке (рисунок 3). Меняется направление: вверх или вниз. В последующем такое чередование продолжается, и после 14 полос второго порядка идет 15-я полоса третьего порядка, шириной около одного метра, после 14 полос третьего порядка проходит полоса четвертого порядка, шириной около трех метров и т.д. (рисунок 4). Таким образом формируются ячейки полос первого порядка, размерами 4-6×4-6 м; второго порядка 90×90 м, третьего – 1250×1250 м, четвертого – 17500×17500 м и т.д. На пересечении полос образуются узлы Карри или D-зоны, обладающие выраженным геопатогенным воздействием. Через каждые 10 метров появляются полосы удвоенной активности шириной 30-40 см.

Рисунок 3, рисунок 4

Несмотря на описание структуры силовых линий точными величинами в реальности, она не имеет стабильной геометрии. Существует большое число факторов, влияющих на смещение узлов и линий, таким образом, вся сеть повсеместно обладает достаточно живым и натуральным видом. В некоторых местах она искажается до неузнаваемости, это обусловлено природными и антропогенными факторами. К природным можно отнести подземные воды, залежи полезных ископаемых, разломы коры и многое другое. Антропогенные факторы весьма очевидны – это любые значительные сооружения людей, такие как: трубопроводы, метро, ЛЭП, подстанции и все в этом роде. Не все природные воздействия на структуру сети являются патогенными, встречаются также положительные места с полезными качествами, отличающиеся по строению от обычных участков. Такие места силы могут выглядеть в плане как перекрестки трех и более линий. Причиной тому может быть, например, наличие подземных рек на разном уровне. Здесь сразу следует подметить, что силовые линии имеют прямую взаимозависимость с рельефом местности и строением подземного пространства, то есть ландшафт согласуется с энергетическим каркасом. Однако, несмотря на аномальные места, силовой каркас в общем виде выглядит достаточно равномерным.

Мы не будем рассматривать макроструктуры, которые образованы линиями Курри. В глобальном, масштабе они формируют пятиугольники с узлами соответственно планетарного уровня. Это отдельная тема, лишь косвенно касающаяся градостроительства. По этому пока что разберемся с менее масштабными вещами.

СОСТАВНЫЕ ЧАСТИ СЕТИ СИЛОВОГО КАРКАСА

Теперь рассмотрим структуру сети по частям. Линии или каналы являются основой структуры силового поля Земли. Образно мы их уже сравнивали с нервной системой человека, так как их качества очень похожи, коротко рассмотрим их. Как уже говорилось выше все линии делятся на несколько категорий по мощности и размеру сечения, если говорить геометрически, это деление не случайно, а упорядочено и иерархично. Внутренняя сила движется по ним в обеих направлениях, это обусловлено тем, что в случае привязки направления дороги к достаточно мощной линии, перемещение по ней облегчается в любую сторону. Зона активного действия располагается, начиная с глубины в 5 метров и уходит вверх с постепенным искажением, то есть объективна только поверхность земли и диапазон в 10 метров. Пересекаясь они формируют ячейки и узлы.

Узлы, образованные на пересечениях связующих линий, обладают одним из двух свойств – это восходящие и нисходящие потоки, или другими словами плюс и минус. Узлы чередуются в шахматном порядке, меняется направление: вверх или вниз. Не стоит включать дуальное восприятие и делить все на хорошее и плохое, разумнее разобраться в узлах более детально:

  • Восходящие – знак минус, от земли к небу. Наполняют земной силой и заряжают на нижнем чакровом уровне, происходит обогащение тела энергией магнитного поля Земли и восстанавливается физиология. Но самое главное, здесь происходит очищение, это выражается как отток сил и усталость, в случае длительного пребывания.
  • Нисходящие – знак плюс, от неба к земле. Здесь происходит вертикализация тела (одухотворение) и облучение космическими, тонкими вибрациями. В этом случае выполняется исключительно наполнение, воодушевление и подпитка, но опять же, нахождение в этой точке должно быть временным.

Выше описанные качества относятся к рядовым узлам, но помимо их существуют также особые точки силы или аномалии, мощность воздействия которых значительно выше. В народе их называют святыми и гиблыми местами. С прикладной точки зрения очевидно, что потенциал благоприятных мест нужно полностью использовать, и избегать отрицательных зон. Однако даже деструктивные точки можно либо использовать определенным образом, либо нивелировать их воздействие, во всяком случае наши предки имели об этом знание в отличие от нас. Конкретно о практическом применении поговорим в отдельной статье. Пребывание в любых местах силы должно быть временным для сохранения здоровья. Показателем таких аномальных мест является рельеф и растительность, которая имеет разные крайности размера или искаженный внешний вид.

схемагеобиогенной сети

Ячейки биогенной сети имеют преимущественно форму прямоугольника или неправильной трапеции, об искажении формы речь уже шла ранее. В первую очередь, это нейтральные области, не оказывающие никакого активного влияния. К ячейкам можно отнести понятие масштаба, подобно линиям разных категорий. При этом внутри крупной ячейки будет находиться несколько меньших. В общем, макроструктуры содержат микроструктуры. Нахождение в нейтральной зоне ничем не ограничено, она универсальна в своем применении. Интересно то, что структура сети носит колебательный характер и меняется циклически, но при этом достаточно стабильно. Интенсивность различных участков повышается и понижается, также имеет место временное перемещение узлов и линий. Зависеть это может от времени года и суток, фаз Луны, погоды и других физических явлений. В разных областях земли все эти процессы протекают по-разному, но закономерности выявить возможно, и учитывать их при дальнейшем проектировании.

ЗАМЕРЫ И ИССЛЕДОВАНИЯ

Все, что существует в нашем мире можно изучить и измерить, будь то материальные объекты, силовые поля или нечто еще большее, все дело в применяемых инструментах и уровне сознания, подметим, что разум тоже является инструментом. Также и силовой каркас можно определить разными способами и зафиксировать для дальнейшей работы. Теоретически это можно сделать, внимательно изучая ландшафт, растительность и другие природные проявления, так как силовые линии и узлы в них проявлены, но этот метод весьма неточен и трудоемок. Эффективнее всего конечно подойдет ясновидение, то есть способность видеть полевые образования и структуры, точность и объективность его велики, но эта способность сейчас мало кому доступна. По этой причине нам остается старый проверенный метод, имеющий современное название биолокация, ранее называемый лозоходством.

Биолокация – это весьма разносторонний способ познания мира. С ее помощью можно не только исследовать местность, но и получать ответы на вопросы и многое другое. Инструментарий здесь также весьма велик, от обычной лозы и проволочных рамок, до маятников и других приспособлений. Не будем сейчас касаться самой технологии, так как это отдельная тема, а только коротко уясним суть. Объективных для современной науки доказательств исследований территории по средствам биолокации конечно не предоставить, но можно довериться опыту прошлых поколений, применявших эту технологию, и прислушаться к своим ощущениям при нахождении на различных участках биогенной сети. В любом случае архитектурная деятельность наших предков, основанная на биолокации, доступна для изучения сегодня, а самое главное – полезность ее для людей ощутимо выше, чем нынешняя архитектура. Примером тому могут послужить практически все города старше двухсот лет по всему миру.

В рамках градостроительства биолокация конечно трудоемкий процесс, учитывая площади измерений, но, во-первых, технологии еще недостаточно отработаны, а во-вторых, результат стоит усилий. Получив широкое распространение, биолокация может стать просто дополнительным разделом геодезических изысканий, так как относится к этой предметной области. В любом случае опыт составления опорных планов с нанесением биогенной сети имеется. Существуют даже попытки создания и реальные образцы приборов для фиксации силовых линий, но широкого распространения они не получили. В любом случае технология и мастера существуют, необходимо только практиковать и улучшать навыки.

ЦЕЛЬ ИССЛЕДОВАНИЙ

Очевиден факт, что биогенная сеть оказывает влияние на всех живых существ, а также на формирование поверхности Земли. Влияние это может быть благотворно и деструктивно, проявляется оно самыми различными способами. Все эти знания нужны для полноценного восприятия реальности и составления комплексной оценки градостроительной ситуации. Глобальная цель исследований состоит в создании наиболее благоприятных условий жизни и труда населения, минимизации и исключении негативных факторов и раскрытия благоприятных возможностей. Самое главное здесь – это трезвый взгляд на все уровни и формы проявления мира для последующей деятельности, согласно обстоятельствам.

Для любого архитектора очевидно понятие планировочных ограничений. Ими могут быть водоемы, крутые уклоны поверхности, болота, скалы и т.д. Но это только материальная сторона вопроса, пренебрегать которой никому не придёт в голову, так как город, построенный на болоте или горных вершинах без средств адаптации с одной стороны абсурден, а с другой невозможен. Коротко говоря, это просто неблагоприятные зоны застройки. С метафизической стороной мира ситуация в реальности аналогична, только ее мало кто сейчас учитывает. Результатом такого отношения становится патогенность городской среды.

В трех измерениях геопатогенные зоны выглядят как столбики-колонны со средним диаметром 20-30 см, чаще всего они поглощают силу живых существ, искажают и разрушают их организм. Это выражается в виде искаженной формы деревьев, замедленного роста растений, хронических заболеваний и т.д. В случае игнорирования геопатогенных зон благополучность населенного пункта понижена, влияние на здоровье и психику отрицательно. Эффективность функциональных зон и коммуникаций снижается. Ориентация силовых линий также не берется в расчет, в итоге дороги и кварталы организуются наперекор силовому каркасу, в результате чего образуются новые патогенные зоны и участки напряженности силового поля, так как все здания и сооружения тоже имеют свои поля.

В итоге возникают вопросы без ответов, откуда взялась та или иная болезнь, почему здесь ломается техника? А ответ прост, все построено не в том месте и в неверном направлении. Это можно сравнить со сборкой стационарного компьютера, если оборудование и комплектующие и собраны верно, то драйвера и программное обеспечение установлено случайным образом, в результате либо сбои, либо полная неработоспособность. Следует также упомянуть о святы местах или салюберогенных зонах. Число их невелико, так же, как и количество патогенных зон. Пребывание на такой территории оказывает сильный оздоровительный эффект, улучшает настроение и вообще повышает все параметры нашей триединой сути. Ценность этих мест столь велика, что обычно они уже заняты храмами и подобными сооружениями, если находятся вблизи населенных пунктов. Очевидно, что и здесь надо знать меру времени пребывания, не случайно строительство жилья на подобных местах не велось никогда.

В итоге, ведя свою проектную и строительную деятельность с учетом геобиогенной сети мы действуем разумно и эффективно, такой метод можно назвать энио-проектированием, то есть учет факторов энергоинформационного обмена. При этом в полной мере принимаются к сведению незримые планировочные ограничения, геометрия населенного пункта привязывается не только к рельефу, но и силовому каркасу. Выявление патогенных и салюберогенных мест позволяет избежать проблем и обрести полезные возможности. Силовые поля в застройке распределяются равномерно и не вызывают конфликтов городской среды.

ВЫВОД

Наша земля имеет множество уровней организации материи и энергии. Не все они видимы глазу, но объективно существуют и оказывают свое воздействие. Геобиогенная сеть или полевая структура Земли устроена подобно сложной и многослойной сети, состоящей из силовых линий, узлов или точек их пересечения и свободных ячеек. Форма, качества и параметры этой сети изменчивы и имеют циклический характер. Структура геобиогенной сети имеет узлы, оказывающие благотворное и патогенное воздействие на среду и живых существ, в процессе проектирования и строительства это должно учитываться. Все составные части сети относятся к различным масштабам и обладают иерархической структурой. Для измерения и фиксации узлов и линий сети самым доступным методом является биолокация, главным прибором в которой выступает человек, а посредником лоза, рамки или маятник. Практически все старые и древние города построены с учетом энергетического каркаса местности. Пренебрежение этим аспектом планировочных условий вызывает деструктивное влияние на здоровье и психику людей, а также разрушительное воздействие на архитектуру, устройства и механизмы. Строительство с учетом геобиогенной сети повышает общее благополучие населения и улучшает эффективность городских процессов. Мир устроен гораздо сложнее и интереснее, чем нам говорили раньше. Новых знаний не стоит бояться и игнорировать, их практическое применение целесообразно и доказано многими поколениями, нам остается вспомнить и начать применять. Чем больше мы узнаем об окружающем нас мире, тем лучше понимаем свое место в нем, во всех смыслах этого слова, тем гармоничнее и разумнее становится созидательная деятельность. И всегда нужно помнить о сверхзадаче – достижение максимального благополучия и счастья.

Поля - это основные элементы структуры базы данных. Они обладают свойствами. От свойств полей зависит, какие типы дан­ных можно вносить в поле, а какие нет, а также то, что можно делать с данными, содержащимися в поле.

Например, данные, содержащиеся в поле Цена, можно просуммиро­вать, чтобы определить итоговый результат. Суммировать данные, содержащиеся в поле Номер телефона, совершенно бессмысленно, даже если номера телефонов записаны цифрами. Очевидно, что эти поля обладают разными свойствами и относятся к разным типам.

Основным свойством любого поля является его длина. Длина поля выражается в символах или, что то же самое, в знаках. От длины поля зависит, сколько информации в нем может поместиться. Мы знаем, что символы кодируются одним или двумя байтами, поэтому можно условно считать, что длина поля измеряется в байтах.

Очевидным уникальным свойством любого поля является его Имя. Разумеется, одна база данных не может иметь двух полей с одинаковым именем, поскольку компьютер запутается в их содержимом. Но кроме имени у поля есть еще свойство Подпись. Подпись - это та информация, которая отображается в заголовке столбца. Ее не надо путать с именем поля, хотя если подпись не задана, то в заголовке отображается имя поля. Разным полям, например, можно задать одинаковые подписи. Это не помешает работе компьютера, поскольку поля при этом по-прежнему сохраняют разные имена. Разные типы полей имеют разное назначение и разные свойства.

1. Основное свойство текстового поля - размер.

2. Числовое поле служит для ввода числовых данных. Оно тоже имеет размер, но числовые поля бывают разными, например, для ввода целых чисел и для ввода действительных чисел. В послед­нем случае кроме размера поля задается также размер десятичной части числа.

3. Поля для ввода дат или времени имеют тип Дата/время. Для ввода логических данных, имеющих только два значения (Да или Нет; 0 или 1; Истина или Ложь и т. п.), служит специальный тип - Логическое поле. Нетрудно догадаться, что длина такого поля всегда равна 1 байту, поскольку этого более чем доста­точно, чтобы выразить логическое значение.

4. Особый тип поля - Денежный. Из названия ясно, какие данные в нем хранят. Денежные суммы можно хранить и в числовом иоле, но в денежном формате с ними удобнее работать. В этом случае компьютер изображает числа вместе с денежными едини­цами, различает рубли и копейки, фунты и пенсы, доллары и центы, в общем, обращается с ними элегантнее.

5. В современных базах данных можно хранить не только числа и буквы, но и картинки, музыкальные клипы и видеозаписи. Поле для таких объектов называется полем объекта OLE.


6. У текстового поля есть недостаток, связанный с тем, что оно имеет ограниченный размер (не более 256 символов). Если нужно вставить в поле длинный текст, для этого служит поле типа MEMO. В нем можно хранить до 65 535 символов. Осо­бенность поля MEMO состоит в том, что реально эти данные хранятся не в поле, а в другом месте, а в поле хранится только указатель на то, где расположен текст.

7. Очень интересно поле Счетчик. На первый взгляд это обычное числовое поле, но оно имеет свойство автоматического наращи­вания. Если в базе есть такое поле, то при вводе новой записи в него автоматически вводится число, на единицу большее, чем значение того же поля в предыдущей записи. Это поле удобно для нумерации записей.

Лекция 2
Связанные таблицы

Примеры, которые мы привели выше, можно считать простей­шими базами данных, но на самом деле это не совсем базы, а только таблицы. Если бы информация хранилась в таких простых структурах, то для работы с ней можно было бы обойтись без специальных систем управления базами данных. На практике при­ходится иметь дело с более сложными структурами, которые обра­зованы из многих связанных таблиц.

Базы данных, имеющие связанные таблицы, называют также реля­ционными базами данных .

Рассмотрим пример работы малого предприятия, занимающегося прокатом компакт-дисков с компьютерными играми. Для того чтобы знать, кто какой диск взял, когда должен возвратить и сколько дисков каждого наименования осталось на складе, пред­приятию необходима база данных. Но если все сведения о поку­пателях и о дисках хранить в одной таблице, то таблица станет очень неудобной для работы. В ней начнутся повторы данных. Всякий раз, когда гражданин Новиков В. П. будет брать очередной диск, придется вписывать его домашний адрес, телефон и паспорт­ные данные. Так никто не работает. Это долго, трудно и чревато многочисленными ошибками.

Гораздо удобнее сделать несколько таблиц. В одной хранить све­дения о клиентах со всеми их паспортными данными, в другой - сведения о выданных дисках, чтобы в любой момент узнать, что выдано клиенту и когда наступает срок возврата, а в третьей табли­це - остаток дисков на складе, чтобы вовремя пополнять запасы. После этого отдельные поля таблиц связывают. Если из таблицы Прокат известно, что клиент НВП взял диск D001, то система управления базой данных мгновенно найдет в таблице Клиенты все паспортные данные этого человека, а в таблице Склад все данные об этом диске.

Разделение базы на связанные таблицы не только удобно, но иногда и необходимо. Например, для увеличения числа заказов менеджер фирмы, занимающейся прокатом компакт-дисков, решил поставить в общем зале компьютер, на котором каждый клиент может про­смотреть список имеющихся дисков с иллюстрациями из игр. Если база состоит только из одной таблицы, то вместе с информацией о дисках случайный посетитель получит доступ к информации о других клиентах фирмы. Вряд ли это понравится заказчикам. Такой мене­джер не только не приобретет новых клиентов, но и растеряет тех, которых имел.

Если данные в разных записях начинают повторяться, это может говорить о том, что база имеет плохую структуру. Надо подумать о том, нельзя ли разбить таблицу на группу связанных таблиц

Если заданы связи между таблицами, то работать с разными таблицами можно, как с одной цельной базой данных

gastroguru © 2017